Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Overview

Self Supervised clusterer

Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retaining interesting image latent representations in the feature space using contrastive learning.

Installation

Currently successfully tested on Ubuntu 18.04 and Ubuntu 20.04, with python 3.6 and 3.8

Works for Pytorch versions >= 1.4. Launch following command to install all pd

pip3 install -r requirements.txt

Logs

All information is logged to tensorboard. If you activate the neptune flag, you can also make logs to Neptune.ai.

Tensorboard

To check logs of your trainings using tensorboard, use the command :

tensorboard --logdir=./logs/NAME_OF_TEST/events

The NAME_OF_TEST is generated automatically for each automatic training you launch, composed of the inputed name of the training you chose (explained further below in commands), and the exact date and time when you launched the training. For example test_on_nocadozole_20210518-153531

Neptune

Before using neptune as a log and output control tool, you need to create a neptune account and get your developer token. Create a neptune_token.txt file and store the token in it.

Create in neptune a folder for your outputs, with a name of your choice, then go to main.py and modify from line 129 :

if args.offline :
    CONNECTION_MODE = "offline"
    run = neptune.init(project='USERNAME/PROJECT_NAME',# You should add your project name and username here
                   api_token=token,
                   mode=CONNECTION_MODE,
                   )
else :
    run = neptune.init(project='USERNAME/PROJECT_NAME',# You should add your project name and username here
               api_token=token,
               )

Preparing your own data

All datasets will be put in the ./data folder. As you might have to create various different datasets inside, create a folder inside for each dataset you use, while giving it a linux-friendly name.

To be completed

Commands

  • Adding the --labels command means you have ground truth for classes, and you wish to use it in evaluation

  • Adding the --neptune command means you wish to log your data in neptune (Check logging section)

  • output_k is the number of clusters

  • model_name is the name you'll use to keep track of this specific model. Date of training launch will be added to its name.

  • augmentation is the contrastive loss augmentation types you'll be using. They can be consulted and modified in the datasets/datasetgetter.py file.

  • epochs is the maximal number of epochs you wish to have. It is 1000 by default

  • batch_size is the training batch size. Default is 32

  • val_batch is the validation batch size. Default is 10

  • sty_dim is the size of the style vector. default is 128

  • img_size size of input images

  • --debug is a flag for activating debug mode, where the training is very fast, just to check if everything is working fine

training from scratch
python main.py --gpu 2  --output_k 9  --model_name=validating_best_image_transfer --augmentation BBC --data_type BBBC021_196  --data_folder N1 --neptune --img_size 196
training using pretrained model
python main.py --gpu 2  --output_k 9  --model_name=validating_best_image_transfer --augmentation improved_v2 --data_type BBBC021_196  --data_folder ND8D --labels --neptune --load_model testing_high_cluster_number_20210604-024131_
valiadtion using pretrained model
python main.py --gpu 2  --output_k 9  --model_name=validating_best_image_transfer --augmentation improved_v2 --data_type BBBC021_196  --data_folder ND8D --labels --validation --neptune --load_model testing_high_cluster_number_20210604-024131_
Owner
Bendidi Ihab
Computational Biologist & DL Eng
Bendidi Ihab
Winning solution for the Galaxy Challenge on Kaggle

Winning solution for the Galaxy Challenge on Kaggle

Sander Dieleman 483 Jan 02, 2023
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.

Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.

260 Dec 21, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021