This is the material used in my free Persian course: Machine Learning with Python

Overview

Machine_Learning_intro

:) سلام دوستان

This is the material used in my free Persian course: Machine Learning with Python (available on YouTube).

This 2 hours long course offers a practical introduction into Machine Learning with Python. this course is for you if you are familiar with data analytics libraries in Python (Pandas, NumPy, Matplotlib) and you are looking for a hands-on introduction to Machine Learning. After finishing this course, you will grasp the basic concepts in Machine Learning and be able to use its techniques on any data with Scikit-Learn, the most commonly used library for Machine Learning in Python.

Note

Oddly, the notebook cells are horizontally aligned when rendered on GitHub. I haven't found the solution to this problem unfortunately. However, they are correctly aligned when rendered on Jupyter, so I recommend downloading the notebook files and opening them with Jupyter or Colab or similar IDEs.


Topics covered:

Intro_to_ML_1:

  • 1:
    • What is Machine Learning?
    • Types of Machine Learning
    • Types of Supervised Learning
  • 2.1:
    • Types of Regression
    • Simple Linear Regression
  • 2.2:
    • Model Evaluation in Regression
    • Overfitting
    • Train/test split
    • Cross-Validation
    • Accuracy Metrics for Regression
    • Simple Linear Regression with Python
  • 2.3:
    • Multiple Linear Regression with Python
    • Polynomial Regression with Python
  • 2.4:
    • Regularization
    • Ridge Regression with Python
    • Lasso Regression with Python

Intro_to_ML_2:

  • 3.1:
    • Types of Classification
    • K-nearest neighbors (KNN)
  • 3.2:
    • Evaluation metrics in Classification
    • Confusion Matrix
    • KNN with Python
  • 3.3:
    • Decision Trees with Python
    • Logistic Regression with Python
    • Support Vector Machines (SVM) with Python
  • 3.4:
    • Neural Networks
    • Perceptron with Python
    • Multi-Layer Perceptron (MLP) with Python

Intro_to_ML_3:

  • 4:
    • Why reduce dimensionality?
    • Feature Selection with Python
    • Feature Extraction with Python

Contact

Feel free to email me your questions here: [email protected]

Material gathered, created, and taught by Yara Mohamadi.

Owner
Yara Mohamadi
Yara Mohamadi
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022