Code for MSc Quantitative Finance Dissertation

Overview

MSc Dissertation Code ReadMe

Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks

Curtis Nybo

MSc Quantitative Finance Dissertation 2020

This repository contains the code developed for my MSc Dissertation.

The Data

The data is retrieved from the Kenneth R. French data library (1). The dataset contains all U.S stocks, sorted into five sectors by SIC code. The datasets I have used in this study are provided in the 'Data' folder. The folder contains the original dataset and a summary of the dataset, and each specific has been extracted to its own file.

The Code

The thesis paper uses six Jupyter notebooks that were developed for this project. Three GARCH specifications and three ANN architectures are considered with one notebook for each.

The ANN notebooks are comprised of one notebook per architecture (5,1,1), (5,12,1), and (5,50,1).

The GARCH notebooks are comprised of one notebook for the GARCH(p,q), GARCH(1,1), and EGARCH(p,q) model.

How to use

Each notebook is commented throughout to guide reproducibility. The data in this repository needs to be placed in a local directory, then the code needs to be changed to point to that directory. The script should then read in the data and follow the same computations in this study.

To replicate the conda environment used to develop and run the code, see the tensorflowML.yml file in the repository. This contains all Python packages used and their corresponding versions. This yml file can be directly imported into Conda to reproduce the environment used in this study.

References

Many thanks to those who provided resources and prior work to leverage in my notebooks and scripts. More specific referencing is completed in each notebook.

(1) Data Library - Kenneth R. French - https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html - 2020

(2) Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras - Jason Brownlee, PhD - https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/ - 2016

(3) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition - Aurélien Géron - https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ - 2019

(4) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems - https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf - 2015

(5) Kevin Sheppard, Stanislav Khrapov, Gábor Lipták, mikedeltalima, Rob Capellini, esvhd, … jbrockmendel. (2019, November 22). bashtage/arch: Release 4.13 (Version 4.13). Zenodo. http://doi.org/10.5281/zenodo.3551028

(6) Auquan - Time Series Analysis for Financial Data VI— GARCH model and predicting SPX returns - https://medium.com/auquan/time-series-analysis-for-finance-arch-garch-models-822f87f1d755 - 2017

(7) Sarit Maitra - Forecasting using GARCH Processes & Monte-Carlo Simulations: statistical analysis & mathematical model using Python - https://towardsdatascience.com/garch-processes-monte-carlo-simulations-for-analytical-forecast-27edf77b2787 - 2019

This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023