QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

Related tags

Deep LearningQAHOI
Overview

QAHOI

QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

Requirements

  • PyTorch >= 1.5.1
  • torchvision >= 0.6.1
pip install -r requirements.txt
  • Compiling CUDA operators
cd ./models/ops
sh ./make.sh
# test
python test.py

Dataset Preparation

Please follow the HICO-DET dataset preparation of GGNet.

After preparation, the data folder as follows:

data
├── hico_20160224_det
|   ├── images
|   |   ├── test2015
|   |   └── train2015
|   └── annotations
|       ├── anno_list.json
|       ├── corre_hico.npy
|       ├── file_name_to_obj_cat.json
|       ├── hoi_id_to_num.json
|       ├── hoi_list_new.json
|       ├── test_hico.json
|       └── trainval_hico.json

Evaluation

Download the model to params folder.

  • We test the model with NVIDIA A6000 GPU, Pytorch 1.9.0, Python 3.8 and CUDA 11.2.
Model Full (def) Rare (def) None-Rare (def) Full (ko) Rare (ko) None-Rare (ko) Download
Swin-Tiny 28.47 22.44 30.27 30.99 24.83 32.84 model
Swin-Base*+ 33.58 25.86 35.88 35.34 27.24 37.76 model
Swin-Large*+ 35.78 29.80 37.56 37.59 31.36 39.36 model

Evaluating the model by running the following command.

--eval_extra to evaluate the spatio contribution.

mAP_default.json and mAP_ko.json will save in current folder.

  • Swin-Tiny
python main.py --resume params/QAHOI_swin_tiny_mul3.pth --backbone swin_tiny --num_feature_levels 3 --use_nms --eval
  • Swin-Base*+
python main.py --resume params/QAHOI_swin_base_384_22k_mul3.pth --backbone swin_base_384 --num_feature_levels 3 --use_nms --eval
  • Swin-Large*+
python main.py --resume params/QAHOI_swin_large_384_22k_mul3.pth --backbone swin_large_384 --num_feature_levels 3 --use_nms --eval

Training

Download the pre-trained swin-tiny model from Swin-Transformer to params folder.

Training QAHOI with Swin-Tiny from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_tiny \
        --pretrained params/swin_tiny_patch4_window7_224.pth \
        --output_dir logs/swin_tiny_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Training QAHOI with Swin-Base*+ from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_base_384 \
        --pretrained params/swin_base_patch4_window7_224_22k.pth \
        --output_dir logs/swin_base_384_22k_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Training QAHOI with Swin-Large*+ from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_large_384 \
        --pretrained params/swin_large_patch4_window12_384_22k.pth \
        --output_dir logs/swin_large_384_22k_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Citation

@article{cjw,
  title={QAHOI: Query-Based Anchors for Human-Object Interaction Detection},
  author={Junwen Chen and Keiji Yanai},
  journal={arXiv preprint arXiv:2112.08647},
  year={2021}
}
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023