The ARCA23K baseline system

Overview

ARCA23K Baseline System

This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline system can be found in our DCASE2021 paper [1].

Requirements

This software requires Python >=3.8. To install the dependencies, run:

poetry install

or:

pip install -r requirements.txt

You are also free to use another package manager (e.g. Conda).

The ARCA23K and FSD50K datasets are required too. For convenience, bash scripts are provided to download the datasets automatically. The dependencies are bash, curl, and unzip. Simply run the following command from the root directory of the project:

$ scripts/download_arca23k.sh
$ scripts/download_fsd50k.sh

This will download the datasets to a directory called _datasets/. When running the software, the --arca23k_dir and --fsd50k_dir options (refer to the Usage section) can be used to specify the location of the datasets. This is only necessary if the dataset paths are different from the default.

Usage

The general usage pattern is:

python <script> [-f PATH] <args...> [options...]

The command-line options can also be specified in configuration files. The path of a configuration file can be specified to the program using the --config_file (or -f) command-line option. This option can be used multiple times. Options that are passed in the command-line override those in the config file(s). See default.ini for an example of a config file. Note that default.ini does not need to be specified in the command line and should not be modified.

Training

To train a model, run:

python baseline/train.py DATASET [-f FILE] [--experiment_id ID] [--work_dir DIR] [--arca23k_dir DIR] [--fsd50k_dir DIR] [--frac NUM] [--sample_rate NUM] [--block_length NUM] [--hop_length NUM] [--features SPEC] [--cache_features BOOL] [--model {vgg9a,vgg11a}] [--weights_path PATH] [--label_noise DICT] [--n_epochs N] [--batch_size N] [--lr NUM] [--lr_scheduler SPEC] [--partition SPEC] [--seed N] [--cuda BOOL] [--n_workers N] [--overwrite BOOL]

The DATASET argument accepts the following values:

  • arca23k - Train using the ARCA23K dataset.
  • arca23k-fsd - Train using the ARCA23K-FSD dataset.
  • mixed-p - Train using a mixture of ARCA23K and ARCA23K-FSD. Replace p with a fraction that represents the percentage of ARCA23K examples to be present in the training set.

The --experiment_id option is used to differentiate experiments. It determines where the output files are saved relative to the path given by the --work_dir option. When running multiple trials, either use the --seed option to specify different random seeds or set it to a negative number to disable setting the random seed. Otherwise, the learned models will be identical across different trials.

Example:

python baseline/train.py arca23k --experiment_id my_experiment

Prediction

To compute predictions, run:

python baseline/predict.py DATASET SUBSET [-f FILE] [--experiment_id ID] [--work_dir DIR] [--arca23k_dir DIR] [--fsd50k_dir DIR] [--output_name FILE_NAME] [--clean BOOL] [--sample_rate NUM] [--block_length NUM] [--features SPEC] [--cache_features BOOL] [--weights_path PATH] [--batch_size N] [--partition SPEC] [--n_workers N] [--seed N] [--cuda BOOL]

The SUBSET argument must be set to either training, validation, or test.

Example:

python baseline/predict.py arca23k test --experiment_id my_experiment

Evaluation

To evaluate the predictions, run:

python baseline/evaluate.py DATASET SUBSET [-f FILE] [--experiment_id LIST] [--work_dir DIR] [--arca23k_dir DIR] [--fsd50k_dir DIR] [--output_name FILE_NAME] [--cached BOOL]

The SUBSET argument must be set to either training, validation, or test.

Example:

python baseline/evaluate.py arca23k test --experiment_id my_experiment

Citing

If you wish to cite this work, please cite the following paper:

[1] T. Iqbal, Y. Cao, A. Bailey, M. D. Plumbley, and W. Wang, “ARCA23K: An audio dataset for investigating open-set label noise”, in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021), 2021, Barcelona, Spain, pp. 201–205.

BibTeX:

@inproceedings{Iqbal2021,
    author = {Iqbal, T. and Cao, Y. and Bailey, A. and Plumbley, M. D. and Wang, W.},
    title = {{ARCA23K}: An audio dataset for investigating open-set label noise},
    booktitle = {Proceedings of the Detection and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021)},
    pages = {201--205},
    year = {2021},
    address = {Barcelona, Spain},
}
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023