Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Overview

Implicit3DUnderstanding (Im3D) [Project Page]

Holistic 3D Scene Understanding from a Single Image with Implicit Representation

Cheng Zhang, Zhaopeng Cui, Yinda Zhang, Shuaicheng Liu, Bing Zeng, Marc Pollefeys

img.jpg 3dbbox.png recon.png
img.jpg 3dbbox.png recon.png
img.jpg 3dbbox.png recon.png

pipeline

Introduction

This repo contains training, testing, evaluation, visualization code of our CVPR 2021 paper. Specially, the repo contains our PyTorch implementation of the decoder of LDIF, which can be extracted and used in other projects. We are expecting to release a refactored version of our pipeline and a PyTorch implementation of the full LDIF model in the future.

Install

sudo apt install xvfb ninja-build
conda env create -f environment.yml
conda activate Im3D
python project.py build

Demo

  1. Download the pretrained checkpoint and unzip it into out/total3d/20110611514267/

  2. Change current directory to Implicit3DUnderstanding/ and run the demo, which will generate 3D detection result and rendered scene mesh to demo/output/1/

    CUDA_VISIBLE_DEVICES=0 python main.py out/total3d/20110611514267/out_config.yaml --mode demo --demo_path demo/inputs/1
    
  3. In case you want to run it off screen (for example, with SSH)

    CUDA_VISIBLE_DEVICES=0 xvfb-run -a -s "-screen 0 800x600x24" python main.py out/total3d/20110611514267/out_config.yaml --mode demo --demo_path demo/inputs/1
    
  4. If you want to run it interactively, change the last line of demo.py

    scene_box.draw3D(if_save=True, save_path = '%s/recon.png' % (save_path))
    

    to

    scene_box.draw3D(if_save=False, save_path = '%s/recon.png' % (save_path))
    

Data preparation

We follow Total3DUnderstanding to use SUN-RGBD to train our Scene Graph Convolutional Network (SGCN), and use Pix3D to train our Local Implicit Embedding Network (LIEN) with Local Deep Implicit Functions (LDIF) decoder.

Preprocess SUN-RGBD data

Please follow Total3DUnderstanding to directly download the processed train/test data.

In case you prefer processing by yourself or want to evaluate 3D detection with our code (To ultilize the evaluation code of Coop, we modified the data processing code of Total3DUnderstanding to save parameters for transforming the coordinate system from Total3D back to Coop), please follow these steps:

  1. Follow Total3DUnderstanding to download the raw data.

  2. According to issue #6 of Total3DUnderstanding, there are a few typos in json files of SUNRGBD dataset, which is mostly solved by the json loader. However, one typo still needs to be fixed by hand. Please find {"name":""propulsion"tool"} in data/sunrgbd/Dataset/SUNRGBD/kv2/kinect2data/002922_2014-06-26_15-43-16_094959634447_rgbf000089-resize/annotation2Dfinal/index.json and remove ""propulsion.

  3. Process the data by

    python -m utils.generate_data
    

Preprocess Pix3D data

We use a different data process pipeline with Total3DUnderstanding. Please follow these steps to generate the train/test data:

  1. Download the Pix3D dataset to data/pix3d/metadata

  2. Run below to generate the train/test data into 'data/pix3d/ldif'

    python utils/preprocess_pix3d4ldif.py
    

Training and Testing

We use wandb for logging and visualization. You can register a wandb account and login before training by wandb login. In case you don't need to visualize the training process, you can put WANDB_MODE=dryrun before the commands bellow.

Thanks to the well-structured code of Total3DUnderstanding, we use the same method to manage parameters of each experiment with configuration files (configs/****.yaml). We first follow Total3DUnderstanding to pretrain each individual module, then jointly finetune the full model with additional physical violation loss.

Pretraining

We use the pretrained checkpoint of Total3DUnderstanding to load weights for ODN. Please download and rename the checkpoint to out/pretrained_models/total3d/model_best.pth. Other modules can be trained then tested with the following steps:

  1. Train LEN by:

    python main.py configs/layout_estimation.yaml
    

    The pretrained checkpoint can be found at out/layout_estimation/[start_time]/model_best.pth

  2. Train LIEN + LDIF by:

    python main.py configs/ldif.yaml
    

    The pretrained checkpoint can be found at out/ldif/[start_time]/model_best.pth

    The training process is followed with a quick test without ICP and Chamfer distance evaluated. In case you want to align mesh and evaluate the Chamfer distance during testing:

    python main.py configs/ldif.yaml --mode train
    

    The generated object meshes can be found at out/ldif/[start_time]/visualization

  3. Replace the checkpoint directories of LEN and LIEN in configs/total3d_ldif_gcnn.yaml with the checkpoints trained above, then train SGCN by:

    python main.py configs/total3d_ldif_gcnn.yaml
    

    The pretrained checkpoint can be found at out/total3d/[start_time]/model_best.pth

Joint finetune

  1. Replace the checkpoint directory in configs/total3d_ldif_gcnn_joint.yaml with the one trained in the last step above, then train the full model by:

    python main.py configs/total3d_ldif_gcnn_joint.yaml
    

    The trained model can be found at out/total3d/[start_time]/model_best.pth

  2. The training process is followed with a quick test without scene mesh generated. In case you want to generate the scene mesh during testing (which will cost a day on 1080ti due to the unoptimized interface of LDIF CUDA kernel):

    python main.py configs/total3d_ldif_gcnn_joint.yaml --mode train
    

    The testing resaults can be found at out/total3d/[start_time]/visualization

Testing

  1. The training process above already include a testing process. In case you want to test LIEN+LDIF or full model by yourself:

    python main.py out/[ldif/total3d]/[start_time]/model_best.pth --mode test
    

    The results will be saved to out/total3d/[start_time]/visualization and the evaluation metrics will be logged to wandb as run summary.

  2. Evaluate 3D object detection with our modified matlab script from Coop:

    external/cooperative_scene_parsing/evaluation/detections/script_eval_detection.m
    

    Before running the script, please specify the following parameters:

    SUNRGBD_path = 'path/to/SUNRGBD';
    result_path = 'path/to/experiment/results/visualization';
    
  3. Visualize the i-th 3D scene interacively by

    python utils/visualize.py --result_path out/total3d/[start_time]/visualization --sequence_id [i]
    

    or save the 3D detection result and rendered scene mesh by

    python utils/visualize.py --result_path out/total3d/[start_time]/visualization --sequence_id [i] --save_path []
    

    In case you do not have a screen:

    python utils/visualize.py --result_path out/total3d/[start_time]/visualization --sequence_id [i] --save_path [] --offscreen
    

    If nothing goes wrong, you should get results like:

    camera view 3D bbox scene reconstruction

  4. Visualize the detection results from a third person view with our modified matlab script from Coop:

    external/cooperative_scene_parsing/evaluation/vis/show_result.m
    

    Before running the script, please specify the following parameters:

    SUNRGBD_path = 'path/to/SUNRGBD';
    save_root = 'path/to/save/the/detection/results';
    paths = {
        {'path/to/save/detection/results', 'path/to/experiment/results/visualization'}, ...
        {'path/to/save/gt/boundingbox/results'}
    };
    vis_pc = false; % or true, if you want to show cloud point ground truth
    views3d = {'oblique', 'top'}; % choose prefered view
    dosave = true; % or false, please place breakpoints to interactively view the results.
    

    If nothing goes wrong, you should get results like:

    oblique view 3D bbox

About the testing speed

Thanks to the simplicity of LIEN+LDIF, the pretrain takes only about 8 hours on a 1080Ti. However, although we used the CUDA kernel of LDIF to optimize the speed, the file-based interface of the kernel still bottlenecked the mesh reconstruction. This is the main reason why our method takes much more time in object and scene mesh reconstruction. If you want speed over mesh quality, please lower the parameter data.marching_cube_resolution in the configuration file.

Citation

If you find our work and code helpful, please consider cite:

@article{zhang2021holistic,
  title={Holistic 3D Scene Understanding from a Single Image with Implicit Representation},
  author={Zhang, Cheng and Cui, Zhaopeng and Zhang, Yinda and Zeng, Bing and Pollefeys, Marc and Liu, Shuaicheng},
  journal={arXiv preprint arXiv:2103.06422},
  year={2021}
}

We thank the following great works:

  • Total3DUnderstanding for their well-structured code. We construct our network based on their well-structured code.
  • Coop for their dataset. We used their processed dataset with 2D detector prediction.
  • LDIF for their novel representation method. We ported their LDIF decoder from Tensorflow to PyTorch.
  • Graph R-CNN for their scene graph design. We adopted their GCN implemention to construct our SGCN.
  • Occupancy Networks for their modified version of mesh-fusion pipeline.

If you find them helpful, please cite:

@InProceedings{Nie_2020_CVPR,
author = {Nie, Yinyu and Han, Xiaoguang and Guo, Shihui and Zheng, Yujian and Chang, Jian and Zhang, Jian Jun},
title = {Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
@inproceedings{huang2018cooperative,
  title={Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation},
  author={Huang, Siyuan and Qi, Siyuan and Xiao, Yinxue and Zhu, Yixin and Wu, Ying Nian and Zhu, Song-Chun},
  booktitle={Advances in Neural Information Processing Systems},
  pages={206--217},
  year={2018}
}	
@inproceedings{genova2020local,
    title={Local Deep Implicit Functions for 3D Shape},
    author={Genova, Kyle and Cole, Forrester and Sud, Avneesh and Sarna, Aaron and Funkhouser, Thomas},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    pages={4857--4866},
    year={2020}
}
@inproceedings{yang2018graph,
    title={Graph r-cnn for scene graph generation},
    author={Yang, Jianwei and Lu, Jiasen and Lee, Stefan and Batra, Dhruv and Parikh, Devi},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    pages={670--685},
    year={2018}
}
@inproceedings{mescheder2019occupancy,
  title={Occupancy networks: Learning 3d reconstruction in function space},
  author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4460--4470},
  year={2019}
}
Owner
Cheng Zhang
Cheng Zhang of UESTC 电子科技大学 通信学院 章程
Cheng Zhang
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022