Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers and helping them make a wise buying decision.

Overview

Product Reviews Summarizer

Version 1.0.0

A quick guide on installation of important libraries and running the code.

The project has three .ipynb files - Data Scraper.ipynb, cosine-similarity-wo-tf-idf.ipynb, and cosine-similarity-w-tf-idf.ipynb.


Data Scraper

For the Data Scraper python script, we need to import the following three libraries - requests, BeautifulSoup, and pandas. The installation process can be viewed by clicking on the respective library names.

Splash

In this project, instead of using the default web browser to scrape data, we have created a splash container using docker. Splash is a light-weight javascript rendering service with an HTTP API. For easy installation, you can watch this amazing video by John Watson Rooney on YouTube.

https://www.youtube.com/watch?v=8q2K41QC2nQ&t=361s

Note: You need to make sure that you give the Splash Localhost URL to the requests.get().

Running the code

After you have installed and configured everything, you can run the code by providing the URL of your choice. Suppose, you are taking a product from Amazon, make sure to go to All Reviews page and go to page #2. Copy this URL upto the last '=' and paste it as an f-string in the code. Add a '{x}' after the '='. The code is ready to run. It will scrape the product name, review title, star rating, and the review body from each page, until the last page is encountered, and save it in .xlsx format.

Note: Specify the required output name and destination.


cosine-similarity-wo-tf-idf

For the cosine similarity model, first we need to download the pretrained GloVe Word Embeddings. Run the Load GloVe Word Embeddings section in the script once. It is only required if the kernel is restarted.

For this script, we need to import the following libraries - numpy, pandas, nltk, nltk.tokenize, nltk.corpus, re, sklearn.metrics.pairwise, networkx, transformers, and time. Also run the nltk.download('punkt') and nltk.download('stopwords') lines to download them.

Next step is to load the data as a dataframe. Make sure to give the correct address. Pre-processing of the reviews is done for efficient results. The pre-processing steps include converting to string datatype, converting alphabetical characters to lowercase, removing stopwords, replacing non-alphabetical characters with blank character and tokenizing the sentences.

The pre-processed data is then grouped based on star ratings and sent to the cosine similarity and pagerank algorithm. The top 10 ranked sentences after the applying the pagerank algorithm are sent to huggingface transformers to create an extractive summary (min_lenght = 75, max_length = 300). The summary, along with the product name, star rating, no of reviews, % of total reviews, and the top 5 frequent words along with the count are saved in .xlsx format.

Note: Specify the required output name and destination.


cosine-similarity-w-tf-idf

For this model, along with the above libraries, we need to import the following additional libraries - spacy, and heapq. The cosine similarity algorithm has a time complexity of O(n^2). In order to have a fast execution, in this method, we are using tf-idf measure to score the frequent words, and hence the corresponding sentences. Only the top 1000 sentences are then sent to the cosine similarity algorithm. Usage of the tf-idf measure, ensures that each product, irrespective of the number of sentences in the reviews, gives an output within 120 seconds. This method makes sure no important feature is lost, giving similar results as the previous method but in considerately less time.


Contributors

© Parv Bhatt © Namratha Sri Mateti © Dominic Thomas


Owner
Parv Bhatt
Masters in Data Analytics Student at Penn State University
Parv Bhatt
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
Pretty-doc - Composable text objects with python

pretty-doc from __future__ import annotations from dataclasses import dataclass

Taine Zhao 2 Jan 17, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
BiQE: Code and dataset for the BiQE paper

BiQE: Bidirectional Query Embedding This repository includes code for BiQE and the datasets introduced in Answering Complex Queries in Knowledge Graph

Bhushan Kotnis 1 Oct 20, 2021
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022