Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Overview

Token Shift GPT

Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwards.

Update: Inexplicably, it actually works quite well. The feedforward module follows the same design as gMLP, except the feature dimension of the gate tensor is divided up into log2(seq_len) chunks, and the mean pool of the past consecutive segments (length 1, 2, 4, 8, etc. into the past) are shifted into each chunk before a projection along the feature dimension.

Install

$ pip install token-shift-gpt

Usage

import torch
from token_shift_gpt import TokenShiftGPT

model = TokenShiftGPT(
    num_tokens = 256,
    dim = 512,
    max_seq_len = 1024,
    depth = 12,
    ff_mult = 8   # when working with small model dimensions, you may want to increase the intermediate feedforward dimension (here, 8x instead of the usual 4x), so the learning is not bottlenecked by the dimensions of the shifted chunk
)

x = torch.randint(0, 256, (1, 1024))
logits = model(x) # (1, 1024, 256)

To use the discounted cumulative sum approach (which only uses one chunk and seems to be just as effective as the above), just set use_discounted_cumsum = True

First install an additional library

$ pip install torch-discounted-cumsum

Then

import torch
from token_shift_gpt import TokenShiftGPT

model = TokenShiftGPT(
    num_tokens = 256,
    dim = 512,
    max_seq_len = 1024,
    depth = 12,
    ff_mult = 8,
    use_discounted_cumsum = True,
    discounted_gamma = 0.9              # gamma factor for discount
)

x = torch.randint(0, 256, (1, 1024))
logits = model(x) # (1, 1024, 256)

Citations

@misc{yu2021s2mlp,
    title   = {S$^2$-MLP: Spatial-Shift MLP Architecture for Vision}, 
    author  = {Tan Yu and Xu Li and Yunfeng Cai and Mingming Sun and Ping Li},
    year    = {2021},
    eprint  = {2106.07477},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{liu2021pay,
    title   = {Pay Attention to MLPs}, 
    author  = {Hanxiao Liu and Zihang Dai and David R. So and Quoc V. Le},
    year    = {2021},
    eprint  = {2105.08050},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@software{peng_bo_2021_5196578,
    author       = {PENG Bo},
    title        = {BlinkDL/RWKV-LM: 0.01},
    month        = {aug},
    year         = {2021},
    publisher    = {Zenodo},
    version      = {0.01},
    doi          = {10.5281/zenodo.5196578},
    url          = {https://doi.org/10.5281/zenodo.5196578}
}
You might also like...
Sequence-to-Sequence Framework in PyTorch
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

MASS: Masked Sequence to Sequence Pre-training for Language Generation
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hundreds of billions of parameters or larger.

GPT-NeoX An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hun

Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Comments
  • self.gate is never used?

    self.gate is never used?

    it seems like self.gate is never actually used, or am I missing something?

    https://github.com/lucidrains/token-shift-gpt/blob/1449b263f1fb222279d00f9128c29f25dbef976b/token_shift_gpt/token_shift_gpt.py#L79

    opened by inspirit 1
Releases(0.0.2)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

186 Dec 29, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

ThinkTwice ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A

Walle 4 Aug 06, 2021
Label data using HuggingFace's transformers and automatically get a prediction service

Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu

Heartex 135 Dec 29, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁

TGCLOUD 🪁 Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁 Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
Search with BERT vectors in Solr and Elasticsearch

Search with BERT vectors in Solr and Elasticsearch

Dmitry Kan 123 Dec 29, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

272 Dec 15, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Kundan Krishna 6 Jun 04, 2021
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021