visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem

Overview

visualize_ML

visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem. It is build on libraries like matplotlib for visualization and sklean,scipy for statistical computations.

PyPI version

Table of content:

Requirement

  • python 2.x or python 3.x

Install

Install dependencies needed for matplotlib

sudo apt-get build-dep python-matplotlib

Install it using pip

pip install visualize_ML

Let's Code

While dealing with a Machine Learning problem some of the initial steps involved are data exploration,analysis followed by feature selection.Below are the modules for these tasks.

1) Data Exploration

At this stage, we explore variables one by one using Uni-variate Analysis which depends on whether the variable type is categorical or continuous .To deal with this we have the explore module.

>>> explore module

visualize_ML.explore.plot(data_input,categorical_name=[],drop=[],PLOT_COLUMNS_SIZE=4,bin_size=20,
bar_width=0.2,wspace=0.5,hspace=0.8)

Continuous Variables : In case of continous variables it plots the Histogram for every variable and gives descriptive statistics for them.

Categorical Variables : In case on categorical variables with 2 or more classes it plots the Bar chart for every variable and gives descriptive statistics for them.

Parameters Type Description
data_input Dataframe This is the input Dataframe with all data.(Right now the input can be only be a dataframe input.)
categorical_name list (default=[ ]) Names of all categorical variable columns with more than 2 classes, to distinguish them with the continuous variablesEmply list implies that there are no categorical features with more than 2 classes.
drop list default=[ ] Names of columns to be dropped.
PLOT_COLUMNS_SIZE int (default=4) Number of plots to display vertically in the display window.The row size is adjusted accordingly.
bin_size int (default="auto") Number of bins for the histogram displayed in the categorical vs categorical category.
wspace float32 (default = 0.5) Horizontal padding between subplot on the display window.
hspace float32 (default = 0.8) Vertical padding between subplot on the display window.

Code Snippet

/* The data set is taken from famous Titanic data(Kaggle)*/

import pandas as pd
from visualize_ML import explore
df = pd.read_csv("dataset/train.csv")
explore.plot(df,["Survived","Pclass","Sex","SibSp","Ticket","Embarked"],drop=["PassengerId","Name"])

Alt text

see the dataset

Note: While plotting all the rows with NaN values and columns with Character values are removed(except if values are True and False ),only numeric data is plotted.

2) Feature Selection

This is one of the challenging task to deal with for a ML task.Here we have to do Bi-variate Analysis to find out the relationship between two variables. Here, we look for association and disassociation between variables at a pre-defined significance level.

relation module helps in visualizing the analysis done on various combination of variables and see relation between them.

>>> relation module

visualize_ML.relation.plot(data_input,target_name="",categorical_name=[],drop=[],bin_size=10)

Continuous vs Continuous variables: To do the Bi-variate analysis scatter plots are made as their pattern indicates the relationship between variables. To indicates the strength of relationship amongst them we use Correlation between them.

The graph displays the correlation coefficient along with other information.

Correlation = Covariance(X,Y) / SQRT( Var(X)*Var(Y))
  • -1: perfect negative linear correlation
  • +1:perfect positive linear correlation and
  • 0: No correlation

Categorical vs Categorical variables: Stacked Column Charts are made to visualize the relation.Chi square test is used to derive the statistical significance of relationship between the variables. It returns probability for the computed chi-square distribution with the degree of freedom. For more information on Chi Test see this

Probability of 0: It indicates that both categorical variable are dependent

Probability of 1: It shows that both variables are independent.

The graph displays the p_value along with other information. If it is leass than 0.05 it states that the variables are dependent.

Categorical vs Continuous variables: To explore the relation between categorical and continuous variables,box plots re drawn at each level of categorical variables. If levels are small in number, it will not show the statistical significance. ANOVA test is used to derive the statistical significance of relationship between the variables.

The graph displays the p_value along with other information. If it is leass than 0.05 it states that the variables are dependent.

For more information on ANOVA test see this

Parameters Type Description
data_input Dataframe This is the input Dataframe with all data.(Right now the input can be only be a dataframe input.)
target_name String The name of the target column.
categorical_name list (default=[ ]) Names of all categorical variable columns with more than 2 classes, to distinguish them with the continuous variablesEmply list implies that there are no categorical features with more than 2 classes.
drop list default=[ ] Names of columns to be dropped.
PLOT_COLUMNS_SIZE int (default=4) Number of plots to display vertically in the display window.The row size is adjusted accordingly.
bin_size int (default="auto") Number of bins for the histogram displayed in the categorical vs categorical category.
wspace float32 (default = 0.5) Horizontal padding between subplot on the display window.
hspace float32 (default = 0.8) Vertical padding between subplot on the display window.

Code Snippet

/* The data set is taken from famous Titanic data(Kaggle)*/
import pandas as pd
from visualize_ML import relation
df = pd.read_csv("dataset/train.csv")
relation.plot(df,"Survived",["Survived","Pclass","Sex","SibSp","Ticket","Embarked"],drop=["PassengerId","Name"],bin_size=10)

Alt text

see the dataset

Note: While plotting all the rows with NaN values and columns with Non numeric values are removed only numeric data is plotted.Only categorical taget variable with string values are allowed.

Contribute

If you want to contribute and add new feature feel free to send Pull request here

This project is still under development so to report any bugs or request new features, head over to the Issues page

Tasks To Do

  • Make input compatible with other formats like Numpy.

  • Visualize best fit lines and decision boundaries for various models to make Parameter Tuning task easy.

    and many others!

Licence

Licensed under The MIT License (MIT).

Copyright

ayush1997(c) 2016

You might also like...
Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database
Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database

SpiderFoot Neo4j Tools Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database Step 1: Installation NOTE: This installs the sf

Extract and visualize information from Gurobi log files
Extract and visualize information from Gurobi log files

GRBlogtools Extract information from Gurobi log files and generate pandas DataFrames or Excel worksheets for further processing. Also includes a wrapp

Extract data from ThousandEyes REST API and visualize it on your customized Grafana Dashboard.
Extract data from ThousandEyes REST API and visualize it on your customized Grafana Dashboard.

ThousandEyes Grafana Dashboard Extract data from the ThousandEyes REST API and visualize it on your customized Grafana Dashboard. Deploy Grafana, Infl

This is  a web application to visualize various famous technical indicators and stocks tickers from user
This is a web application to visualize various famous technical indicators and stocks tickers from user

Visualizing Technical Indicators Using Python and Plotly. Currently facing issues hosting the application on heroku. As soon as I am able to I'll like

Visualize the training curve from the *.csv file (tensorboard format).
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Visualize your pandas data with one-line code
Visualize your pandas data with one-line code

PandasEcharts 简介 基于pandas和pyecharts的可视化工具 安装 pip 安装 $ pip install pandasecharts 源码安装 $ git clone https://github.com/gamersover/pandasecharts $ cd pand

 Flame Graphs visualize profiled code
Flame Graphs visualize profiled code

Flame Graphs visualize profiled code

Visualize data of Vietnam's regions with interactive maps.
Visualize data of Vietnam's regions with interactive maps.

Plotting Vietnam Development Map This is my personal project that I use plotly to analyse and visualize data of Vietnam's regions with interactive map

 Epagneul is a tool to visualize and investigate windows event logs
Epagneul is a tool to visualize and investigate windows event logs

epagneul Epagneul is a tool to visualize and investigate windows event logs. Dep

Comments
  • Can't get graphs to space right

    Can't get graphs to space right

    Not sure what is going on tried looking at the code.. I'm using Jupyter notebook if that is messing stuff up? data: state region age gender race marital_status ptype status-grp 0 IA 3 73 M W M Patient NaN 1 IL 2 57 M W S Patient NaN 2 WI 2 32 F W U Patient NaN 3 WI 2 54 F W U Patient NaN 4 IL 2 56 F W M Patient NaN 5 WI 2 31 F W S Patient

    input line: explore.plot(df2,['state','region','age','gender','race','marital_status','ptype','status-grp'],PLOT_COLUMNS_SIZE=2,bin_size=20, bar_width=0.2,wspace=.75,hspace=.75) result: vizml

    opened by dartdog 6
  • Just installed but it required and executed a downgrade of MPL

    Just installed but it required and executed a downgrade of MPL

    The PIP install downgraded MPL from 1.5.1 to 1.4.2 and also required the installation of "sudo apt-get install blt-dev" for freetype to build,, I had not previously run into that before? Any advice on how to preserve Matplotlib at 1.5.1 and of course MPL 2.0 is about to drop soon as well? The package looks quite useful with some nice ideas!

    opened by dartdog 2
Releases(0.2.2)
Owner
Ayush Singh
Machine Learning | Computer Vision | Data Science | Python
Ayush Singh
Bioinformatics tool for exploring RNA-Protein interactions

Explore RNA-Protein interactions. RNPFind is a bioinformatics tool. It takes an RNA transcript as input and gives a list of RNA binding protein (RBP)

Nahin Khan 3 Jan 27, 2022
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 10.2k Dec 30, 2022
Visualize large time-series data in plotly

plotly_resampler enables visualizing large sequential data by adding resampling functionality to Plotly figures. In this Plotly-Resampler demo over 11

PreDiCT.IDLab 604 Dec 28, 2022
Because trello only have payed options to generate a RunUp chart, this solves that!

Trello Runup Chart Generator The basic concept of the project is that Corello is pay-to-use and want to use Trello To-Do/Doing/Done automation with gi

Rômulo Schiavon 1 Dec 21, 2021
A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

Anthropic 98 Dec 27, 2022
Print matplotlib colors

mplcolors Tired of searching "matplotlib colors" every week/day/hour? This simple script displays them all conveniently right in your terminal emulato

Brandon Barker 32 Dec 13, 2022
A Simple Flask-Plotly Example for NTU 110-1 DSSI Class

A Simple Flask-Plotly Example for NTU 110-1 DSSI Class Live Demo Prerequisites We will use Flask and Ploty to build a Flask application. If you haven'

Ting Ni Wu 1 Dec 11, 2021
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022
Automatically visualize your pandas dataframe via a single print! 📊 💡

A Python API for Intelligent Visual Discovery Lux is a Python library that facilitate fast and easy data exploration by automating the visualization a

Lux 4.3k Dec 28, 2022
Runtime analysis of code with plotting

Runtime analysis of code with plotting A quick comparison among Python, Cython, and the C languages A Programming Assignment regarding the Programming

Cena Ashoori 2 Dec 24, 2021
Multi-class confusion matrix library in Python

Table of contents Overview Installation Usage Document Try PyCM in Your Browser Issues & Bug Reports Todo Outputs Dependencies Contribution References

Sepand Haghighi 1.3k Dec 31, 2022
Visualization of the World Religion Data dataset by Correlates of War Project.

World Religion Data Visualization Visualization of the World Religion Data dataset by Correlates of War Project. Mostly personal project to famirializ

Emile Bangma 1 Oct 15, 2022
Implement the Perspective open source code in preparation for data visualization

Task Overview | Installation Instructions | Link to Module 2 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 23, 2022
Numerical methods for ordinary differential equations: Euler, Improved Euler, Runge-Kutta.

Numerical methods Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary

Aleksey Korshuk 5 Apr 29, 2022
Log visualizer for whirl-framework

Lumberjack Log visualizer for whirl-framework Установка pip install -r requirements.txt Как пользоваться python3 lumberjack.py -l путь до лога -o

Vladimir Malinovskii 2 Dec 19, 2022
Generate the report for OCULTest.

Sample report generated in this function Usage example from utils.gen_report import generate_report if __name__ == '__main__': # def generate_rep

Philip Guo 1 Mar 10, 2022
A simple script that displays pixel-based animation on GitHub Activity

GitHub Activity Animator This project contains a simple Javascript snippet that produces an animation on your GitHub activity tracker. The project als

16 Nov 15, 2021
Set of matplotlib operations that are not trivial

Matplotlib Snippets This repository contains a set of matplotlib operations that are not trivial. Histograms Histogram with bins adapted to log scale

Raphael Meudec 1 Nov 15, 2021
Parse Robinhood 1099 Tax Document from PDF into CSV

Robinhood 1099 Parser This project converts Robinhood Securities 1099 tax document from PDF to CSV file. This tool will be helpful for those who need

Keun Tae (Kevin) Park 52 Jun 10, 2022
Create artistic visualisations with your exercise data (Python version)

strava_py Create artistic visualisations with your exercise data (Python version). This is a port of the R strava package to Python. Examples Facets A

Marcus Volz 53 Dec 28, 2022