A rule-based log analyzer & filter

Overview

Flog

一个根据规则集来处理文本日志的工具。

前言

在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。

日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。

以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决定写这个工具,根据规则自动分析日志、剔除垃圾信息。

使用方法

安装

python setup.py install

基础用法

flog -r rules.yaml /path/to/1.log /path/to/2.log /path/to/3.log -o /path/to/filtered.log

其中:

  • rules.yaml是规则文件
  • /path/to/x.log是原始的日志文件,支持一次输入多个日志文件。
  • /path/to/filtered.log是过滤后的日志文件,如果不指定文件名(直接一个-o),会自动生成一个。

如果不需要过滤日志内容,只需显示分析结果,可以直接:

flog -r rules.yaml /path/to/your.log

规则语法

基础

name: Rule Name #规则集名称
patterns: #规则列表
  # 单行模式,如果匹配到 ^Hello,就输出 Match Hello
  - match: "^Hello"
    message: "Match Hello"
    action: bypass #保留此条日志(会输出到-o指定的文件中)
    
  # 多行模式,以^Hello开头,以^End结束,输出 Match Hello to End,并丢弃此条日志
  - start: "^Hello"
    end: "^End"
    message: "Match Hello to End"
    action: drop

  - start: "Start"
    start_message: "Match Start" #匹配开始时显示的信息
    end: "End"
    end_messagee: "Match End" #结束时显示的信息

纯过滤模式

name: Rule Name
patterns:
  - match: "^Hello" #删除日志中以Hello开头的行
  - start: "^Hello" #多行模式,删除从Hello到End中间的所有内容
    end: "^End"

过滤日志内容,并输出信息

name: Rule Name
patterns:
  - match: "^Hello" #删除日志中以Hello开头的行
    message: "Match Hello"
    action: drop #删除此行日志

规则嵌套

仅多行模式支持规则嵌套。

name: Rule
patterns:
  - start: "^Response.*{$"
    end: "^}"
    patterns:
      - match: "username = (.*)"
        message: "Current user: {{ capture[0] }}"

输入:

Login Response {
  username = zorro
  userid = 123456
}

输出:

Current user: zorro

action

action字段主要用于控制是否过滤此条日志,仅在指定 -o 参数后生效。 取值范围:【dropbypass】。

为了简化纯过滤类型规则的书写,action默认值的规则如下:

  • 如果规则中包含messagestart_messageend_message字段,action默认为bypass,即输出到文件中。
  • 如果规则中不包含message相关字段,action默认为drop,变成一条纯过滤规则。

message

message 字段用于在标准输出显示信息,并且支持 Jinja 模版语法来自定义输出信息内容,通过它可以实现一些简单的日志分析功能。

目前支持的参数有:

  • lines: (多行模式下)匹配到的所有行
  • content: 匹配到的日志内容
  • captures: 正则表达式(match/start/end)捕获的内容

例如:

name: Rule Name
patterns:
  - match: "^Hello (.*)"
    message: "Match {{captures[0]}}"

如果遇到:"Hello lilei",则会在终端输出"Match lilei"

context

可以把日志中频繁出现的正则提炼出来,放到context字段下,避免复制粘贴多次,例如:

name: Rule Name

context:
  timestamp: "\\d{4}-\\d{2}-\\d{2} \\d{2}:\\d{2}:\\d{2}.\\d{3}"
patterns:
  - match: "hello ([^:]*):"
    message: "{{ timestamp }} - {{ captures[0] }}"

输入:2022-04-08 16:52:37.152 hello world: this is a test message
输出:2022-04-08 16:52:37.152 - world

高亮

内置了一些 Jinjafilter,可以在终端高亮输出结果,目前包含:

black, red, green, yellow, blue, purple, cyan, white, bold, light, italic, underline, blink, reverse, strike

例如:

patterns:
  - match: "Error: (.*)"
    message: "{{ captures[0] | red }}"

输入:Error: file not found
输出:file not found

include

支持引入其它规则文件,例如:

name: Rule
include: base #引入同级目录下的 base.yaml 或 base.yml

include支持引入一个或多个文件,例如:

name: Rule
include:
  - base
  - ../base
  - base.yaml
  - base/base1
  - base/base2.yaml
  - ../base.yaml
  - /usr/etc/rules/base.yml

contextpatterns会按照引用顺序依次合并,如果有同名的context,后面的会替换之前的。

License

MIT

Owner
上山打老虎
专业造工具
上山打老虎
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022