Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

Related tags

Deep Learningconsec
Overview

ConSeC

PWC

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of a target word to be conditioned not only on its context but also on the explicit senses assigned to nearby words.

ConSeC Image

If you find our paper, code or framework useful, please reference this work in your paper:

@inproceedings{barba-etal-2021-consec,
    title = "{C}on{S}e{C}: Word Sense Disambiguation as Continuous Sense Comprehension",
    author = "Barba, Edoardo  and
      Procopio, Luigi  and
      Navigli, Roberto",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.112",
    pages = "1492--1503",
}

Setup Env

Requirements:

  • Debian-based (e.g. Debian, Ubuntu, ...) system
  • conda installed

Run the following command to quickly setup the env needed to run our code:

bash setup.sh

It's a bash command that will setup a conda environment with everything you need. Just answer the prompts as you proceed.

Finally, download the following resources:

  • Wikipedia Freqs. This is a compressed folder containing the files needed to compute the PMI score. Once downloaded, place the file inside data/ and run:
    cd data/
    tar -xvf pmi.tar.gz
    rm pmi.tar.gz
    cd ..
  • optionally, you can download the checkpoint trained on Semcor only that achieves 82.0 on ALL; place it inside the experiments/ folder (we recommend experiments/released-ckpts/)

Train

This is a PyTorch Lightning project with hydra configurations files, so most of the training parameters (e.g. datasets, optimizer, model, ...) are specified in yaml files. If you are not familiar with hydra and want to play a bit with training new models, we recommend going first through hydra tutorials; otherwise, you can skip this section (but you should still checkout hydra as it's an amazing piece of software!).

Anyway, training is done via the training script, src/scripts/model/train.py, and its parameters are read from the .yaml files in the conf/ folders (but for the conf/test/ folder which is used for evaluation). Once you applied all your desired changes, you can run the new training with:

(consec) [email protected]:~/consec$ PYTHONPATH=$(pwd) python src/scripts/model/train.py

Evaluate

Evaluation is similarly handled via hydra configuration files, located in the conf/test/ folder. There's a single file there, which specifies how to evaluate (e.g. model checkpoint and test to use) against the framework of Raganato et al. (2017) (we will include XL-WSD, along with its checkpoints, later on). Parameters are quite self-explanatory and you might be most interested in the following ones:

  • model.model_checkpoint: path to the target checkpoint to use
  • test_raganato_path: path to the test file to evaluate against

To make a practical example, to evaluate the checkpoint we released against SemEval-2007, run the following command:

(consec) [email protected]:~/consec$ PYTHONPATH=$(pwd) python src/scripts/model/raganato_evaluate.py model.model_checkpoint=experiments/released-ckpts/consec_semcor_normal_best.ckpt test_raganato_path=data/WSD_Evaluation_Framework/Evaluation_Datasets/semeval2007/semeval2007

NOTE: test_raganato_path expects what we refer to as a raganato path, that is, a prefix path such that both {test_raganato_path}.data.xml and {test_raganato_path}.gold.key.txt exist (and have the same role as in the standard evaluation framework).

Interactive Predict

We also implemented an interactive predict that allows you to query the model interactively; given as input:

  • a word in a context
  • its candidate definitions
  • its context definitions the model will disambiguate the target word. Check it out with:
(consec) [email protected]:~/consec$ PYTHONPATH=$(pwd) python src/scripts/model/predict.py experiments/released-ckpts/consec_semcor_normal_best.ckpt -t
Enter space-separated text: I have a beautiful dog
Target position: 4
Enter candidate lemma-def pairs. " --- " separated. Enter to stop
 * dog --- a member of the genus Canis
 * dog --- someone who is morally reprehensible
 * 
Enter context lemma-def-position tuples. " --- " separated. Position should be token position in space-separated input. Enter to stop
 * beautiful --- delighting the senses or exciting intellectual or emotional admiration --- 3
 * 
        # predictions
                 * 0.9939        dog     a member of the genus Canis 
                 * 0.0061        dog     someone who is morally reprehensible 

The scores assigned to each prediction are their probabilities.

Acknowledgments

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 under the European Union’s Horizon 2020 research and innovation programme.

This work was supported in part by the MIUR under grant “Dipartimenti di eccellenza 2018-2022” of the Department of Computer Science of the Sapienza University of Rome.

License

This work is under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license

Owner
Sapienza NLP group
The NLP group at the Sapienza University of Rome
Sapienza NLP group
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022