The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Overview

Watermark-Robustness-Toolbox - Official PyTorch Implementation

contact Python 3.6 PyTorch 1.3.1 cuDNN 10.1.2 Website shields.io GPLv3 license

This repository contains the official PyTorch implementation of the following paper to appear at IEEE Security and Privacy 2022:

SoK: How Robust is Deep Neural Network Image Classification Watermarking?
Nils Lukas, Edward Jiang, Xinda Li, Florian Kerschbaum
https://arxiv.org/abs/2108.04974

Abstract: Deep Neural Network (DNN) watermarking is a method for provenance verification of DNN models. Watermarking should be robust against watermark removal attacks that derive a surrogate model that evades provenance verification. Many watermarking schemes that claim robustness have been proposed, but their robustness is only validated in isolation against a relatively small set of attacks. There is no systematic, empirical evaluation of these claims against a common, comprehensive set of removal attacks. This uncertainty about a watermarking scheme's robustness causes difficulty to trust their deployment in practice. In this paper, we evaluate whether recently proposed watermarking schemes that claim robustness are robust against a large set of removal attacks. We survey methods from the literature that (i) are known removal attacks, (ii) derive surrogate models but have not been evaluated as removal attacks, and (iii) novel removal attacks. Weight shifting, transfer learning and smooth retraining are novel removal attacks adapted to the DNN watermarking schemes surveyed in this paper. We propose taxonomies for watermarking schemes and removal attacks. Our empirical evaluation includes an ablation study over sets of parameters for each attack and watermarking scheme on the image classification datasets CIFAR-10 and ImageNet. Surprisingly, our study shows that none of the surveyed watermarking schemes is robust in practice. We find that schemes fail to withstand adaptive attacks and known methods for deriving surrogate models that have not been evaluated as removal attacks. This points to intrinsic flaws in how robustness is currently evaluated. Our evaluation includes a discussion of the runtime of each attack to underpin their practical relevance. While none of the schemes is robust against all attacks, none of the attacks removes all watermarks. We show that attacks can be combined and find combined attacks that remove all watermarks. We show that watermarking schemes need to be evaluated against a more extensive set of removal attacks with a more realistic adversary model. Our source code and a complete dataset of evaluation results will be made publicly available, which allows to independently verify our conclusions.

Features

All watermarking schemes and removal attacks are configured for the image classification datasets CIFAR-10 (32x32 pixels, 10 classes) and ImageNet (224x224 pixels, 1k classes). We implemented the following watermarking schemes, sorted by their categories:

.. and the following removal attacks, sorted by their categories:

Get Started

At this point, the Watermark-Robustness-Toolbox project is not available as a standalone pip package, but we are working on allowing an installation via pip. We describe a manual installation and usage. First, install all dependencies via pip.

$ pip install -r requirements.txt

The following four main scripts provide the entire toolbox's functionality:

  • train.py: Pre-trains an unmarked neural network.
  • embed.py: Embeds a watermark into a pre-trained neural network.
  • steal.py: Performs a removal attack against a watermarked neural network.
  • decision_threshold.py: Computes the decision threshold for a watermarking scheme.

We use the mlconfig library to pass configuration hyperparameters to each script. Configuration files used in our paper for CIFAR-10 and ImageNet can be found in the configs/ directory. Configuration files store all hyperparameters needed to reproduce an experiment.

Step 1: Pre-train a Model on CIFAR-10

$ python train.py --config configs/cifar10/train_configs/resnet.yaml

This creates an outputs directory and saves a model file at outputs/cifar10/null_models/resnet/.

Step 2: Embed an Adi Watermark

$ python embed.py --wm_config configs/cifar10/wm_configs/adi.yaml \
                  --filename outputs/cifar10/null_models/resnet/best.pth

This embeds an Adi watermark into the pre-trained model from 'Example 1' and saves (i) the watermarked model and (ii) all data to read the watermark under outputs/cifar10/wm/adi/00000_adi/.

Step 3: Attempt to Remove a Watermark

$ python steal.py --attack_config configs/cifar10/attack_configs/ftal.yaml \
                  --wm_dir outputs/cifar10/wm/adi/00000_adi/

This runs the Fine-Tuning (FTAL) removal attack against the watermarked model and creates a surrogate model stored under outputs/cifar10/attacks/ftal/. The directory also contains human-readable debug files, such as the surrogate model's watermark and test accuracies.

Datasets

Our toolbox currently implements custom data loaders (class WRTDataLoader) for the following datasets.

  • CIFAR-10
  • ImageNet (needs manual download)
  • Omniglot (needs manual download)
  • Open Images (needs manual download)

Documentation

We are actively working on documenting the parameters of each watermarking scheme and removal attack. At this point, we can only refer to the method's source code (at wrt/defenses/ and wrt/attacks/). Soon we will host a complete documentation of all parameters, so stay tuned!

Contribute

We encourage authors of watermarking schemes or removal attacks to implement their methods in the Watermark-Robustness-Toolbox to make them publicly accessible in a unified framework. Our aim is to improve reproducibility which makes it easier to evaluate a scheme's robustness. Any contributions or suggestions for improvements are welcome and greatly appreciated. This toolbox is maintained as part of a university project by graduate students.

Reference

The codebase has been based off an early version of the Adversarial-Robustness-Tooblox.

Cite our paper

@InProceedings{lukas2022watermarkingsok,
  title={SoK: How Robust is Deep Neural Network Image Classification Watermarking?}, 
  author={Lukas, Nils and Jiang, Edward and Li, Xinda and Kerschbaum, Florian},
  year={2022},
  booktitle={IEEE Symposium on Security and Privacy}
}
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022