(AAAI 2021) Progressive One-shot Human Parsing

Overview

End-to-end One-shot Human Parsing

This is the official repository for our two papers:


Introduction:

In the two papers, we propose a new task named One-shot Human Parsing (OSHP). OSHP requires parsing humans in a query image into an open set of reference classes defined by any single reference example (i.e., a support image) during testing, no matter whether they have been annotated during training (base classes) or not (novel classes). This new task mainly aims to accommodate human parsing into a wider range of applications that seek to parse flexible fashion/clothing classes that are not pre-defined in previous large-scale datasets.

Progressive One-shot Human Parsing (AAAI 2021) applies a progressive training scheme and is separated into three stages.

End-to-end One-shot Human Parsing (journal version) is a one-stage end-to-end training method, which has higher performance and FPS.


Main results:

You can find the well-trained models together with the performance in the following table.

EOPNet ATR-OS, Kway F1 ATR-OS, Kway Fold F2 LIP-OS, Kway F1 LIP-OS, Kway F2 CIHP-OS, Kway F1 CIHP-OS Kway F2
Novel mIoU 31.1 34.6 25.7 30.4 20.5 25.1
Human mIoU 61.9 63.3 43.0 45.7 49.1 45.5
Model Model Coming Soon Model Model Model Model

You can find the well-trained models together with the performance in the following table.

EOPNet ATR-OS, 1way F1 ATR-OS, 1way F2 LIP-OS, 1way F1 LIP-OS, 1way F2 CIHP-OS, 1way F1 CIHP-OS 1way F2
Novel mIoU 53.0 41.4 42.0 46.2 25.4 36.4
Human mIoU 68.2 69.5 57.0 58.0 53.8 55.4
Model Coming Soon

Getting started:

Data preparation:

First, please download ATR, LIP and CIHP dataset from source. Then, use the following commands to link the data into our project folder. Please also remember to download the atr flipped labels and cihp flipped labels.

# ATR dataset
$ ln -s YOUR_ATR_PATH/JPEGImages/* YOUR_PROJECT_ROOT/ATR_OS/trainval_images
$ ln -s YOUR_ATR_PATH/SegmentationClassAug/* YOUR_PROJECT_ROOT/ATR_OS/trainval_classes
$ ln -s YOUR_ATR_PATH/SegmentationClassAug_rev/* YOUR_PROJECT_ROOT/ATR_OS/Category_rev_ids


# LIP dataset
$ ln -s YOUR_LIP_PATH/TrainVal_images/TrainVal_images/train_images/* YOUR_PROJECT_ROOT/LIP_OS/trainval_images
$ ln -s YOUR_LIP_PATH/TrainVal_images/TrainVal_images/val_images/* YOUR_PROJECT_ROOT/LIP_OS/trainval_images
$ ln -s YOUR_LIP_PATH/TrainVal_parsing_annotations/TrainVal_parsing_annotations/train_segmentations/* YOUR_PROJECT_ROOT/LIP_OS/trainval_classes
$ ln -s YOUR_LIP_PATH/TrainVal_parsing_annotations/TrainVal_parsing_annotations/val_segmentations/* YOUR_PROJECT_ROOT/LIP_OS/trainval_classes
$ ln -s YOUR_LIP_PATH/Train_parsing_reversed_labels/TrainVal_parsing_annotations/* YOUR_PROJECT_ROOT/LIP_OS/Category_rev_ids
$ ln -s YOUR_LIP_PATH/val_segmentations_reversed/* YOUR_PROJECT_ROOT/LIP_OS/Category_rev_ids


# CIHP dataset
$ ln -s YOUR_CIHP_PATH/Training/Images/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_images
$ ln -s YOUR_CIHP_PATH/Validation/Images/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_images
$ ln -s YOUR_CIHP_PATH/Training/Category_ids/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_classes
$ ln -s YOUR_CIHP_PATH/Validation/Category_ids/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_classes
$ ln -s YOUR_CIHP_PATH/Category_rev_ids/* YOUR_PROJECT_ROOT/CIHP_OS/Category_rev_ids

Please also download our generated support .pkl files from source, which contains each class's image IDs. You can also generate support files on your own by controlling dtrain_dtest_split in oshp_loader.py, however, the training and validation list might be different from our paper.

Finally, your data folder should look like this:

${PROJECT ROOT}
|-- data
|   |--datasets
|       |-- ATR_OS
|       |   |-- list
|       |   |   |-- meta_train_id.txt
|       |   |   `-- meta_test_id.txt
|       |   |-- support
|       |   |   |-- meta_train_atr_supports.pkl
|       |   |   `-- meta_test_atr_supports.pkl
|       |   |-- trainval_images
|       |   |   |-- 997-1.jpg
|       |   |   |-- 997-2.jpg
|       |   |   `-- ...
|       |   |-- trainval_classes
|       |   |   |-- 997-1.png
|       |   |   |-- 997-2.png
|       |   |   `-- ... 
|       |   `-- Category_rev_ids
|       |       |-- 997-1.png
|       |       |-- 997-2.png
|       |       `-- ... 
|       |-- LIP_OS
|       |   |-- list
|       |   |   |-- meta_train_id.txt
|       |   |   |-- meta_test_id.txt
|       |   |-- support
|       |   |   |-- meta_train_lip_supports.pkl
|       |   |   `-- meta_test_lip_supports.pkl
|       |   |-- trainval_images
|       |   |   |-- ...
|       |   |-- trainval_classes
|       |   |   |-- ... 
|       |   `-- Category_rev_ids
|       |       |-- ... 
|       `-- CIHP_OS
|           |-- list
|           |   |-- meta_train_id.txt
|           |   |-- meta_test_id.txt
|           |-- support
|           |   |-- meta_train_cihp_supports.pkl
|           |   `-- meta_test_cihp_supports.pkl
|           |-- trainval_images
|           |   |-- ...
|           |-- trainval_classes
|           |   |-- ... 
|           `-- Category_rev_ids
|               |-- ... 

Finally, please download the DeepLab V3+ pretrained model (pretrained on COCO dataset) from source and put it into the data folder:

${PROJECT ROOT}
|-- data
|   |--pretrained_model
|       |--deeplab_v3plus_v3.pth

Installation:

Please make sure your current environment has Python >= 3.7.0 and pytorch >= 1.1.0. The pytorch can be downloaded from source.

Then, clone the repository and install the dependencies from the following commands:

git clone https://github.com/Charleshhy/One-shot-Human-Parsing.git
cd One-shot-Human-Parsing
pip install -r requirements.txt

Training:

To train EOPNet in End-to-end One-shot Human Parsing (journal version), run:

# OSHP kway on ATR-OS fold 1
bash scripts/atr_eop_kwf1.sh

Validation:

To evaluate EOPNet in End-to-end One-shot Human Parsing (journal version), run:

# OSHP kway on ATR-OS fold 1
bash scripts/evaluate_atr_eop_kwf1.sh

TODO:

  • Release training/validation code for POPNet
  • Release well-trained EOPNet 1-way models

Citation:

If you find our papers or this repository useful, please consider cite our papers:

@inproceedings{he2021progressive,
title={Progressive One-shot Human Parsing},
author={He, Haoyu and Zhang, Jing and Thuraisingham, Bhavani and Tao, Dacheng},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2021}
}

@article{he2021end,
title={End-to-end One-shot Human Parsing},
author={He, Haoyu and Zhang, Jing and Zhuang, Bohan and Cai, Jianfei and Tao, Dacheng},
journal={arXiv preprint arXiv:2105.01241},
year={2021}
}

Acknowledgement:

This repository is mainly developed basing on Graphonomy and Grapy-ML.

RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022