Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Overview

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics

@WIFS2021 (Montpellier, France)

Rony Abecidan, Vincent Itier, Jeremie Boulanger, Patrick Bas

Installation

To be able to reproduce our experiments and do your own ones, please follow our Installation Instructions

Architecture used

Domain Adaptation in action

  • Source : Half of images from the Splicing category of DEFACTO
  • Target : Other half of the images from the Splicing category of DEFACTO, compressed to JPEG with a quality factor of 5%

To have a quick idea of the adaptation impact on the training phase, we selected a batch of size 512 from the target and, we represented the evolution of the final embeddings distributions from this batch during the training according to the setups SrcOnly and Update($\sigma=8$) described in the paper. The training relative to the SrcOnly setup is on the left meanwhile the one relative to Update($\sigma=8$) is on the right.

Don't hesitate to click on the gif below to see it better !

  • As you can observe, in the SrcOnly setup, the forgery detector is more and more prone to false alarms, certainly because compressing images to QF5 results in creating artifacts in the high frequencies that can be misinterpreted by the model. However, it has no real difficulty to identify correctly the forged images.

  • In parallel, in the Update setup, the forgery detector is more informed and make less false alarms during the training.

Discrepancies with the first version of our article

Several modifications have been carried out since the writing of this paper in order to :

  • Generate databases as most clean as possible
  • Make our results as most reproducible as possible
  • Reduce effectively computation time and memory space

Considering that remark, you will not exactly retrieve the results we shared in the first version of the paper with the implementation proposed here. Nevertheless, the results we got from this new implementation are comparable with the previous ones and you should obtain similar results as the ones shared in this page.

For more information about the modifications we performed and the reasons behind, click here

Main references

@inproceedings{mandelli2020training,
  title={Training {CNNs} in Presence of {JPEG} Compression: Multimedia Forensics vs Computer Vision},
  author={Mandelli, Sara and Bonettini, Nicol{\`o} and Bestagini, Paolo and Tubaro, Stefano},
  booktitle={2020 IEEE International Workshop on Information Forensics and Security (WIFS)},
  pages={1--6},
  year={2020},
  organization={IEEE}
}

@inproceedings{bayar2016,
  title={A deep learning approach to universal image manipulation detection using a new convolutional layer},
  author={Bayar, Belhassen and Stamm, Matthew C},
  booktitle={Proceedings of the 4th ACM workshop on information hiding and multimedia security (IH\&MMSec)},
  pages={5--10},
  year={2016}
}

@inproceedings{long2015learning,
  title={Learning transferable features with deep adaptation networks},
  author={Long, M. and Cao, Y. and Wang, J. and Jordan, M.},
  booktitle={International Conference on Machine Learning},
  pages={97--105},
  year={2015},
  organization={PMLR}
}


@inproceedings{DEFACTODataset, 
	author = {Ga{\"e}l Mahfoudi and Badr Tajini and Florent Retraint and Fr{\'e}d{\'e}ric Morain-Nicolier and Jean Luc Dugelay and Marc Pic},
	title={{DEFACTO:} Image and Face Manipulation Dataset},
	booktitle={27th European Signal Processing Conference (EUSIPCO 2019)},
	year={2019}
}

Citing our paper

If you wish to refer to our paper, please use the following BibTeX entry

@inproceedings{abecidan:hal-03374780,
  TITLE = {{Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics}},
  AUTHOR = {Abecidan, Rony and Itier, Vincent and Boulanger, J{\'e}r{\'e}mie and Bas, Patrick},
  URL = {https://hal.archives-ouvertes.fr/hal-03374780},
  BOOKTITLE = {{WIFS 2021 : IEEE International Workshop on Information Forensics and Security}},
  ADDRESS = {Montpellier, France},
  PUBLISHER = {{IEEE}},
  YEAR = {2021},
  MONTH = Dec,
  PDF = {https://hal.archives-ouvertes.fr/hal-03374780/file/2021_wifs.pdf},
  HAL_ID = {hal-03374780}
}
Owner
Rony Abecidan
PhD Candidate @ Centrale Lille
Rony Abecidan
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023