It is a system used to detect bone fractures. using techniques deep learning and image processing

Overview

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures

It is a system used to detect bone fractures. using techniques deep learning and image processing

Transfer learning is a very powerful and bleeding-edge tool to achieve high accuracies on classification tasks on images when the data and the computational power is in limited supply.

Here I attempted to create an Custom Deep Learning model using Deep Neural Networks with intermediate convolutional layers to classify X-ray images of humerus bone fracture from the ones that are not fractured.

As I pass an input image, an output is given as a “Positive” or “Negative” label. The input data is in the form of X Ray images of the Humerus bones. Hence, the effort is to train a Supervised Learning model with the data to give correct label to the input image inorder to predict a fracture. Some preprocessing of the data like converting RGB images to Grayscale, switching between channels_first & channels_last depending upon the backend Deep Learning engine that will be employed for computations will have to be done.

This repository contains a Keras implementation of a 121 layer Densenet Model on MURA dataset with additional 3 Densely Connected Layers at top.

I achieved an accuracy of about 79% after disconnecting the top 60 layers of the pre-trained model and let it train on the new dataset from a ground truth of no more than being a mere chance (i.e. 50%).

The accuracy improved to ~85% after playing aroung with different hyperparameters and got an understanding of what the model is learning by implementing Class Activation Maps on the gradients of intermediate convolution and activation layers.

Here, I trained the Densenet on XR_HUMERUS of the dataset for 40 epochs with a batch size of 16.

You can train the model by running train__humerus_fracture_detection_keras_model.ipynb Jupyter Notebook with necessary directory changes. You can load the trained model by running load_humerus_fracture_detection_keras_model.ipynb Jupyter Notebook. You can visualize model's learning at different intermediate layers by running visualize__humerus_fracture_detection_keras_model_cmap.ipynb Jupyter notebook.

Few visualizations are available in layer outputs directory.

The notebook can be used to implement other available pre-trained models from Tensorflow Keras for Transfer Learning.

Intelligent-Classification.mp4
Owner
Mohammed Hussien
Mohammed Hussien
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022