Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

Overview

You Only Cut Once (YOCO)

YOCO is a simple method/strategy of performing augmentations, which enjoys the properties of parameter-free, easy usage, and boosting almost all augmentations for free (negligible computation & memory cost). We hope our study will attract the community’s attention in revisiting how to perform data augmentations.

You Only Cut Once: Boosting Data Augmentation with a Single Cut
Junlin Han, Pengfei Fang, Weihao Li, Jie Hong, Ali Armin, Ian Reid, Lars Petersson, Hongdong Li
DATA61-CSIRO and Australian National University and University of Adelaide
Preprint

@inproceedings{han2022yoco,
  title={You Only Cut Once: Boosting Data Augmentation with a Single Cut},
  author={Junlin Han and Pengfei Fang and Weihao Li and Jie Hong and Mohammad Ali Armin and and Ian Reid and Lars Petersson and Hongdong Li},
  booktitle={arXiv preprint arXiv:2201.12078},
  year={2022}
}

YOCO cuts one image into two equal pieces, either in the height or the width dimension. The same data augmentations are performed independently within each piece. Augmented pieces are then concatenated together to form one single augmented image.  

Results

Overall, YOCO benefits almost all augmentations in multiple vision tasks (classification, contrastive learning, object detection, instance segmentation, image deraining, image super-resolution). Please see our paper for more.

Easy usages

Applying YOCO is quite easy, here is a demo code of performing YOCO at the batch level.

***
images: images to be augmented, here is tensor with (b,c,h,w) shape
aug: composed augmentation operations
h: height of images
w: width of images
***

def YOCO(images, aug, h, w):
    images = torch.cat((aug(images[:, :, :, 0:int(w/2)]), aug(images[:, :, :, int(w/2):w])), dim=3) if \
    torch.rand(1) > 0.5 else torch.cat((aug(images[:, :, 0:int(h/2), :]), aug(images[:, :, int(h/2):h, :])), dim=2)
    return images
    
for i, (images, target) in enumerate(train_loader):    
    aug = torch.nn.Sequential(
      transforms.RandomHorizontalFlip(), )
    _, _, h, w = images.shape
    # perform augmentations with YOCO
    images = YOCO(images, aug, h, w) 

Prerequisites

This repo aims to be minimal modifications on official PyTorch ImageNet training code and MoCo. Following their instructions to install the environments and prepare the datasets.

timm is also required for ImageNet classification, simply run

pip install timm

Images augmented with YOCO

For each quadruplet, we show the original input image, augmented image from image-level augmentation, and two images from different cut dimensions produced by YOCO.

Contact

[email protected] or [email protected]

If you tried YOCO in other tasks/datasets/augmentations, please feel free to let me know the results. They will be collected and presented in this repo, regardless of positive or negative. Many thanks!

Acknowledgments

Our code is developed based on official PyTorch ImageNet training code and MoCo.

Owner
ANU/CSIRO/AIML/U Adelaide. Working on vision/graphics. Email: [email
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022