验证码识别 深度学习 tensorflow 神经网络

Overview

captcha_tf2

验证码识别 深度学习 tensorflow 神经网络
使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上

目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。

实例demo

训练过程

  • 优化器选择: Adam
  • 损失函数: MSLE(均方对数误差)
  • 数据集: 随机生成的10000张图片,按照8:2用于训练和验证
  • 设备: Titan X 在训练过程中第5次epoch即可达到 80的accuracy50以上的val_accuracy
    经过30次epoch accuracy达到93, val_acc在85以上
    最高达到97 acc

目前训练val提升可以,loss下降稳定


demo图片
效果

效果
效果

目录

1. 项目结构

1.1 文件目录

序号 文件 说明
1 model/ 模型权重文件
2 network/ 神经网络
3 settings_tf 项目配置文件
4 tools/ 工具文件
5 data/ 数据文件

1.2 主要文件

序号 文件 说明
1 train.py 训练程序
2 detect.py 测试程序
3 make_data.py 训练集合成程序
4 create_image.py 数据集生产脚本

2. 使用

修改主路径下derect.py的配置变量注:注意config.py的图片size
直接调用python detcet.py
保存格式:*.txt: [6, 9, 5, 6] 1.jpg

3. 训练

3.1 数据准备:

  • 如果自己收集数据较为繁琐,可直接调用create_image.py,修改相应配置即可快速生成图片集和标注文件 无需其他步骤
  • 或是自己去网络上寻找验证码图片集, 保存格式需以数字顺序保存,且标注文件存放在某个单独的 txt中,标注结果是对应的图片名数字-1作为下标 默认采用数据集样式为1.jpg, 2.jpg ...的顺序格式
| ̄ ̄data/
|   |
|   | ̄ ̄images/
|   |   |
|   |   | ̄ ̄1.jpg
|   |   |
|   |   | ̄ ̄2.jpg
|   |    
|   | ̄ ̄label.txt

3.2开始训练

首先修改congig.py配置文件
接着修改train.py

  • 开始训练 python train.py
    训练中

网络

序号
输入 (B, 60, 160, 1)
1 卷积(32) relu BN
2 卷积(64) relu BN 相等池化
3 卷积(128) relu BN 相等池化
4 卷积(64) relu BN 相等池化
5 卷积(32) relu BN 相等池化
6 扁平化
8 全链接(onehot) softmax
输出 (长度, 类别)
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022