Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Overview

Pose-Transfer

Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here.

Video generation with a single image as input. More details can be found in the supplementary materials in our paper.

News

  • We have released a new branch PATN_Fine. We introduce a segment-based skip-connection and a novel segment-based style loss, achieving even better results on DeepFashion.
  • Video demo is available now. We further improve the performance of our model by introducing a segment-based skip-connection. We will release the code soon. Refer to our supplementary materials for more details.
  • Codes for pytorch 1.0 is available now under the branch pytorch_v1.0. The same results on both datasets can be reproduced with the pretrained model.

Notes:

In pytorch 1.0, running_mean and running_var are not saved for the Instance Normalization layer by default. To reproduce our result in the paper, launch python tool/rm_insnorm_running_vars.py to remove corresponding keys in the pretrained model. (Only for the DeepFashion dataset.)

This is Pytorch implementation for pose transfer on both Market1501 and DeepFashion dataset. The code is written by Tengteng Huang and Zhen Zhu.

Requirement

  • pytorch(0.3.1)
  • torchvision(0.2.0)
  • numpy
  • scipy
  • scikit-image
  • pillow
  • pandas
  • tqdm
  • dominate

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/tengteng95/Pose-Transfer.git
cd Pose-Transfer

Data Preperation

We provide our dataset split files and extracted keypoints files for convience.

Market1501

  • Download the Market-1501 dataset from here. Rename bounding_box_train and bounding_box_test to train and test, and put them under the market_data directory.
  • Download train/test splits and train/test key points annotations from Google Drive or Baidu Disk, including market-pairs-train.csv, market-pairs-test.csv, market-annotation-train.csv, market-annotation-train.csv. Put these four files under the market_data directory.
  • Generate the pose heatmaps. Launch
python tool/generate_pose_map_market.py

DeepFashion

Note: In our settings, we crop the images of DeepFashion into the resolution of 176x256 in a center-crop manner.

python tool/generate_fashion_datasets.py
  • Download train/test pairs and train/test key points annotations from Google Drive or Baidu Disk, including fasion-resize-pairs-train.csv, fasion-resize-pairs-test.csv, fasion-resize-annotation-train.csv, fasion-resize-annotation-train.csv. Put these four files under the fashion_data directory.
  • Generate the pose heatmaps. Launch
python tool/generate_pose_map_fashion.py

Notes:

Optionally, you can also generate these files by yourself.

  1. Keypoints files

We use OpenPose to generate keypoints.

  • Download pose estimator from Google Drive or Baidu Disk. Put it under the root folder Pose-Transfer.
  • Change the paths input_folder and output_path in tool/compute_coordinates.py. And then launch
python2 compute_coordinates.py
  1. Dataset split files
python2 tool/create_pairs_dataset.py

Train a model

Market-1501

python train.py --dataroot ./market_data/ --name market_PATN --model PATN --lambda_GAN 5 --lambda_A 10  --lambda_B 10 --dataset_mode keypoint --no_lsgan --n_layers 3 --norm batch --batchSize 32 --resize_or_crop no --gpu_ids 0 --BP_input_nc 18 --no_flip --which_model_netG PATN --niter 500 --niter_decay 200 --checkpoints_dir ./checkpoints --pairLst ./market_data/market-pairs-train.csv --L1_type l1_plus_perL1 --n_layers_D 3 --with_D_PP 1 --with_D_PB 1  --display_id 0

DeepFashion

python train.py --dataroot ./fashion_data/ --name fashion_PATN --model PATN --lambda_GAN 5 --lambda_A 1 --lambda_B 1 --dataset_mode keypoint --n_layers 3 --norm instance --batchSize 7 --pool_size 0 --resize_or_crop no --gpu_ids 0 --BP_input_nc 18 --no_flip --which_model_netG PATN --niter 500 --niter_decay 200 --checkpoints_dir ./checkpoints --pairLst ./fashion_data/fasion-resize-pairs-train.csv --L1_type l1_plus_perL1 --n_layers_D 3 --with_D_PP 1 --with_D_PB 1  --display_id 0

Test the model

Market1501

python test.py --dataroot ./market_data/ --name market_PATN --model PATN --phase test --dataset_mode keypoint --norm batch --batchSize 1 --resize_or_crop no --gpu_ids 2 --BP_input_nc 18 --no_flip --which_model_netG PATN --checkpoints_dir ./checkpoints --pairLst ./market_data/market-pairs-test.csv --which_epoch latest --results_dir ./results --display_id 0

DeepFashion

python test.py --dataroot ./fashion_data/ --name fashion_PATN --model PATN --phase test --dataset_mode keypoint --norm instance --batchSize 1 --resize_or_crop no --gpu_ids 0 --BP_input_nc 18 --no_flip --which_model_netG PATN --checkpoints_dir ./checkpoints --pairLst ./fashion_data/fasion-resize-pairs-test.csv --which_epoch latest --results_dir ./results --display_id 0

Evaluation

We adopt SSIM, mask-SSIM, IS, mask-IS, DS, and PCKh for evaluation of Market-1501. SSIM, IS, DS, PCKh for DeepFashion.

1) SSIM and mask-SSIM, IS and mask-IS, mask-SSIM

For evaluation, Tensorflow 1.4.1(python3) is required. Please see requirements_tf.txt for details.

For Market-1501:

python tool/getMetrics_market.py

For DeepFashion:

python tool/getMetrics_market.py

If you still have problems for evaluation, please consider using docker.

docker run -v <Pose-Transfer path>:/tmp -w /tmp --runtime=nvidia -it --rm tensorflow/tensorflow:1.4.1-gpu-py3 bash
# now in docker:
$ pip install scikit-image tqdm 
$ python tool/getMetrics_market.py

Refer to this Issue.

2) DS Score

Download pretrained on VOC 300x300 model and install propper caffe version SSD. Put it in the ssd_score forlder.

For Market-1501:

python compute_ssd_score_market.py --input_dir path/to/generated/images

For DeepFashion:

python compute_ssd_score_fashion.py --input_dir path/to/generated/images

3) PCKh

  • First, run tool/crop_market.py or tool/crop_fashion.py.
  • Download pose estimator from Google Drive or Baidu Disk. Put it under the root folder Pose-Transfer.
  • Change the paths input_folder and output_path in tool/compute_coordinates.py. And then launch
python2 compute_coordinates.py
  • run tool/calPCKH_fashion.py or tool/calPCKH_market.py

Pre-trained model

Our pre-trained model can be downloaded Google Drive or Baidu Disk.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{zhu2019progressive,
  title={Progressive Pose Attention Transfer for Person Image Generation},
  author={Zhu, Zhen and Huang, Tengteng and Shi, Baoguang and Yu, Miao and Wang, Bofei and Bai, Xiang},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={2347--2356},
  year={2019}
}

Acknowledgments

Our code is based on the popular pytorch-CycleGAN-and-pix2pix.

Owner
Tengteng Huang
Tengteng Huang
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022