Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

Overview

News

  • 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Volumes, Multi-view Neural Human Rendering, and Deferred Neural Human Rendering.
  • 05/13/2021 To make the following works easier compare with our model, we save our rendering results of ZJU-MoCap at here and write a document that describes the training and test protocols.
  • 05/12/2021 The code supports the test and visualization on unseen human poses.
  • 05/12/2021 We update the ZJU-MoCap dataset with better fitted SMPL using EasyMocap. We also release a website for visualization. Please see here for the usage of provided smpl parameters.

Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans

Project Page | Video | Paper | Data

monocular

Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans
Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, Xiaowei Zhou
CVPR 2021

Any questions or discussions are welcomed!

Installation

Please see INSTALL.md for manual installation.

Installation using docker

Please see docker/README.md.

Thanks to Zhaoyi Wan for providing the docker implementation.

Run the code on the custom dataset

Please see CUSTOM.

Run the code on People-Snapshot

Please see INSTALL.md to download the dataset.

We provide the pretrained models at here.

Process People-Snapshot

We already provide some processed data. If you want to process more videos of People-Snapshot, you could use tools/process_snapshot.py.

You can also visualize smpl parameters of People-Snapshot with tools/vis_snapshot.py.

Visualization on People-Snapshot

Take the visualization on female-3-casual as an example. The command lines for visualization are recorded in visualize.sh.

  1. Download the corresponding pretrained model and put it to $ROOT/data/trained_model/if_nerf/female3c/latest.pth.

  2. Visualization:

    • Visualize novel views of single frame
    python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_novel_view True num_render_views 144
    

    monocular

    • Visualize views of dynamic humans with fixed camera
    python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_novel_pose True
    

    monocular

    • Visualize mesh
    # generate meshes
    python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_mesh True train.num_workers 0
    # visualize a specific mesh
    python tools/render_mesh.py --exp_name female3c --dataset people_snapshot --mesh_ind 226
    

    monocular

  3. The results of visualization are located at $ROOT/data/render/female3c and $ROOT/data/perform/female3c.

Training on People-Snapshot

Take the training on female-3-casual as an example. The command lines for training are recorded in train.sh.

  1. Train:
    # training
    python train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False
    # distributed training
    python -m torch.distributed.launch --nproc_per_node=4 train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False gpus "0, 1, 2, 3" distributed True
    
  2. Train with white background:
    # training
    python train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False white_bkgd True
    
  3. Tensorboard:
    tensorboard --logdir data/record/if_nerf
    

Run the code on ZJU-MoCap

Please see INSTALL.md to download the dataset.

We provide the pretrained models at here.

Potential problems of provided smpl parameters

  1. The newly fitted parameters locate in new_params. Currently, the released pretrained models are trained on previously fitted parameters, which locate in params.
  2. The smpl parameters of ZJU-MoCap have different definition from the one of MPI's smplx.
    • If you want to extract vertices from the provided smpl parameters, please use zju_smpl/extract_vertices.py.
    • The reason that we use the current definition is described at here.

It is okay to train Neural Body with smpl parameters fitted by smplx.

Test on ZJU-MoCap

The command lines for test are recorded in test.sh.

Take the test on sequence 313 as an example.

  1. Download the corresponding pretrained model and put it to $ROOT/data/trained_model/if_nerf/xyzc_313/latest.pth.
  2. Test on training human poses:
    python run.py --type evaluate --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313
    
  3. Test on unseen human poses:
    python run.py --type evaluate --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 test_novel_pose True
    

Visualization on ZJU-MoCap

Take the visualization on sequence 313 as an example. The command lines for visualization are recorded in visualize.sh.

  1. Download the corresponding pretrained model and put it to $ROOT/data/trained_model/if_nerf/xyzc_313/latest.pth.

  2. Visualization:

    • Visualize novel views of single frame
    python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_view True
    

    zju_mocap

    • Visualize novel views of single frame by rotating the SMPL model
    python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_view True num_render_views 100
    

    zju_mocap

    • Visualize views of dynamic humans with fixed camera
    python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_pose True num_render_frame 1000 num_render_views 1
    

    zju_mocap

    • Visualize views of dynamic humans with rotated camera
    python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_pose True num_render_frame 1000
    

    zju_mocap

    • Visualize mesh
    # generate meshes
    python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_mesh True train.num_workers 0
    # visualize a specific mesh
    python tools/render_mesh.py --exp_name xyzc_313 --dataset zju_mocap --mesh_ind 0
    

    zju_mocap

  3. The results of visualization are located at $ROOT/data/render/xyzc_313 and $ROOT/data/perform/xyzc_313.

Training on ZJU-MoCap

Take the training on sequence 313 as an example. The command lines for training are recorded in train.sh.

  1. Train:
    # training
    python train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False
    # distributed training
    python -m torch.distributed.launch --nproc_per_node=4 train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False gpus "0, 1, 2, 3" distributed True
    
  2. Train with white background:
    # training
    python train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False white_bkgd True
    
  3. Tensorboard:
    tensorboard --logdir data/record/if_nerf
    

Citation

If you find this code useful for your research, please use the following BibTeX entry.

@inproceedings{peng2021neural,
  title={Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans},
  author={Peng, Sida and Zhang, Yuanqing and Xu, Yinghao and Wang, Qianqian and Shuai, Qing and Bao, Hujun and Zhou, Xiaowei},
  booktitle={CVPR},
  year={2021}
}
Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022