The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Overview

Deep Exemplar-based Video Colorization (Pytorch Implementation)

Paper | Pretrained Model | Youtube video 🔥 | Colab demo

Deep Exemplar-based Video Colorization, CVPR2019

Bo Zhang1,3, Mingming He1,5, Jing Liao2, Pedro V. Sander1, Lu Yuan4, Amine Bermak1, Dong Chen3
1Hong Kong University of Science and Technology,2City University of Hong Kong, 3Microsoft Research Asia, 4Microsoft Cloud&AI, 5USC Institute for Creative Technologies

Prerequisites

  • Python 3.6+
  • Nvidia GPU + CUDA, CuDNN

Installation

First use the following commands to prepare the environment:

conda create -n ColorVid python=3.6
source activate ColorVid
pip install -r requirements.txt

Then, download the pretrained models from this link, unzip the file and place the files into the corresponding folders:

  • video_moredata_l1 under the checkpoints folder
  • vgg19_conv.pth and vgg19_gray.pth under the data folder

Data Preparation

In order to colorize your own video, it requires to extract the video frames, and provide a reference image as an example.

  • Place your video frames into one folder, e.g., ./sample_videos/v32_180
  • Place your reference images into another folder, e.g., ./sample_videos/v32

If you want to automatically retrieve color images, you can try the retrieval algorithm from this link which will retrieve similar images from the ImageNet dataset. Or you can try this link on your own image database.

Test

python test.py --image-size [image-size] \
               --clip_path [path-to-video-frames] \
               --ref_path [path-to-reference] \
               --output_path [path-to-output]

We provide several sample video clips with corresponding references. For example, one can colorize one sample legacy video using:

python test.py --clip_path ./sample_videos/clips/v32 \
               --ref_path ./sample_videos/ref/v32 \
               --output_path ./sample_videos/output

Note that we use 216*384 images for training, which has aspect ratio of 1:2. During inference, we scale the input to this size and then rescale the output back to the original size.

Train

We also provide training code for reference. The training can be started by running:

python --data_root [root of video samples] \
       --data_root_imagenet [root of image samples] \
       --gpu_ids [gpu ids] \

We do not provide the full video dataset due to the copyright issue. For image samples, we retrieve semantically similar images from ImageNet using this repository. Still, one can refer to our code to understand the detailed procedure of augmenting the image dataset to mimic the video frames.

Comparison with State-of-the-Arts

More results

Please check our Youtube demo for results of video colorization.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{zhang2019deep,
title={Deep exemplar-based video colorization},
author={Zhang, Bo and He, Mingming and Liao, Jing and Sander, Pedro V and Yuan, Lu and Bermak, Amine and Chen, Dong},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={8052--8061},
year={2019}
}

Old Photo Restoration 🔥

If you are also interested in restoring the artifacts in the legacy photo, please check our recent work, bringing old photo back to life.

@inproceedings{wan2020bringing,
title={Bringing Old Photos Back to Life},
author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={2747--2757},
year={2020}
}

License

This project is licensed under the MIT license.

Comments
  • I met

    I met "CUDA error: an illegal memory access was encountered" problem

    When i tested your pre-trained model, i met the problem called "CUDA error: an illegal memory access was encountered", can you provide the version of your CUDA, cudnn and pytorch

    opened by Zonobia-A 3
  • Could i apply this method to image colorization

    Could i apply this method to image colorization

    Hi, could i apply this method to image colorization and remove the temporal consistency loss? BTW, how to get the pairs.txt/pairs_mid.txt/pairs_bad.txt used in videoloader_imagenet.py?

    opened by buptlj 2
  • video size very low

    video size very low

    video colorization very good and very impressive . but render image low size 768x432 . and video size also same. how to in increase the image size and video size. thank you..

    opened by srinivas68 2
  • training command is wrong.

    training command is wrong.

    The original training command is python --data_root [root of video samples] \ --data_root_imagenet [root of image samples] \ --gpu_ids [gpu ids] \ Maybe it should be python train.py --data_root [root of video samples] \ --data_root_imagenet [root of image samples] \ --gpu_ids [gpu ids] \ ?

    opened by Horizon2333 1
  • There seems a bug ofr feature centering with x_features - y_features.mean

    There seems a bug ofr feature centering with x_features - y_features.mean

    There seems a bug ofr feature centering with x_features - y_features.mean which I think should be x_features - x_features.mean https://github.com/zhangmozhe/Deep-Exemplar-based-Video-Colorization/blob/37639748f12dfecbb0a3fe265b533887b5fe46ce/models/ContextualLoss.py#L100

    opened by JerryLeolfl 1
  • the test code

    the test code

    Thanks for your great work! I have a question when i run test.py. Why don't you extract the feature of inference image out of the for loop. I haven't found any difference.

    opened by buptlj 1
  • CUDA OOM

    CUDA OOM

    Hello, I am running a 4gb nvidia GPU. Is that enough for inference? I try to run on ubuntu 18.04 as well as windows but always get a Out of memory error eventually. Sometimes happen after 2nd image and sometimes after 5th. This is 1080p video.

    opened by quocthaitang 1
  • illustrative training data

    illustrative training data

    Could you please release a tiny illustrative training dataset, such that the preparation of a custom training data can be easily followed. Currently, it is not easy to prepare a custom training data by reading the train.py. or could you please give a further explanation of the following fields? ( image1_name, image2_name, reference_video_name, reference_video_name1, reference_name1, reference_name2, reference_name3, reference_name4, reference_name5, reference_gt1, reference_gt2, reference_gt3, ) Thank you very much.

    opened by davyfeng 1
  • Runtime error

    Runtime error

    Getting a runtime error when running the test cells at the 'first we visualize the input video'. I'm not good with code, but this is the first time I've experienced this issue with this wonderful program. No cells execute after this error. I've attached a screenshot. IMG_7258

    opened by StevieMaccc 0
  • Test result problem

    Test result problem

    At present, after training, it is found that the generated test image is effective, but the color saturation is very low. Is it because of the colored model or other reasons? I'm looking forward to your reply!!!

    opened by songyn95 0
  • Training has little effect

    Training has little effect

    Hello, I read in the paper that "we train the network for 10 epichs with a batch size of 40 pairs of video frames. " Is it effective after only 10 iterations? Is your data 768 videos, 25 frames per video? I only train one video at present, epoch=40, but I find that it has little effect. What may be the reason?

    opened by songyn95 0
  • Error 404 - Important files missing

    Error 404 - Important files missing

    I was working with the Colab program and there appears to be important models / files missing. As a result the program has ceased to function. I've brough to the designers attention so hopefully will be resolved.

    opened by StevieMaccc 1
  • CUDA device error

    CUDA device error "module 'torch._C' has no attribute '_cuda_setDevice'" when running test.py

    Hi !

    Trying out test.py results in the following error:

    Traceback (most recent call last): File "test.py", line 26, in <module> torch.cuda.set_device(0) File "C:\Users\natha\anaconda3\envs\ColorVid\lib\site-packages\torch\cuda\__init__.py", line 311, in set_device torch._C._cuda_setDevice(device) AttributeError: module 'torch._C' has no attribute '_cuda_setDevice'

    I tried installing pytorch manually using their tool https://pytorch.org/get-started/locally/ (with CUDA 11.6) but that doesn't resolve the issue.

    Can someone help me understand what is going on ? Thanks !!

    opened by FoxTrotte 4
  • Questions about the test phase

    Questions about the test phase

    Thanks for your outstanding work! I have some questions when I read it.

    1. What are the settings when you test this video model on image colorization which used for comparing with other image colorization methods?
    2. Could you please give me a url about your video testset (116 video clips collected from Videvo)? Thanks again for your attention.
    opened by JerryLeolfl 0
  • It seems not correct of the code in TestTransforms.py line 341

    It seems not correct of the code in TestTransforms.py line 341

    https://github.com/zhangmozhe/Deep-Exemplar-based-Video-Colorization/blob/37639748f12dfecbb0a3fe265b533887b5fe46ce/lib/TestTransforms.py#L341 it seems a repeated define of call

    opened by JerryLeolfl 0
  • Wrong output resolution

    Wrong output resolution

    Processing 4x3 video 912x720 outputs cropped and downscaled 16x9 768x432. Playing around "python test.py --image-size [image-size] " doesn't help My be I don't properly specify an arguments? So, what the the proper use of --image-size [image-size] in order to get 912x720? Greatly appreciate for suggesting.

    opened by semel1 5
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022