Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Overview

Robust Object Detection via Instance-Level Temporal Cycle Confusion

This repo contains the implementation of the ICCV 2021 paper, Robust Object Detection via Instance-Level Temporal Cycle Confusion.

Screenshot

Building reliable object detectors that are robust to domain shifts, such as various changes in context, viewpoint, and object appearances, is critical for real world applications. In this work, we study the effectiveness of auxiliary self-supervised tasks to improve out-of-distribution generalization of object detectors. Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level cycle confusion (CycConf), which operates on the region features of the object detectors. For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision. CycConf encourages the object detector to explore invariant structures across instances under various motion, which leads to improved model robustness in unseen domains at test time. We observe consistent out-of-domain performance improvements when training object detectors in tandem with self-supervised tasks on various domain adaptation benchmarks with static images (Cityscapes, Foggy Cityscapes, Sim10K) and large-scale video datasets (BDD100K and Waymo open data).

Installation

Environment

  • CUDA 10.2
  • Python >= 3.7
  • Pytorch >= 1.6
  • THe Detectron2 version matches Pytorch and CUDA versions.

Dependencies

  1. Create a virtual env.
  • python3 -m pip install --user virtualenv
  • python3 -m venv cyc-conf
  • source cyc-conf/bin/activate
  1. Install dependencies.
  • pip install -r requirements.txt

  • Install Pytorch 1.9

pip3 install torch torchvision

Check out the previous Pytorch versions here.

  • Install Detectron2 Build Detectron2 from Source (gcc & g++ >= 5.4) python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'

Or, you can install Pre-built detectron2 (example for CUDA 10.2, Pytorch 1.9)

python -m pip install detectron2 -f \ https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html

More details can be found here.

Data Preparation

BDD100K

  1. Download the BDD100K MOT 2020 dataset (MOT 2020 Images and MOT 2020 Labels) and the detection labels (Detection 2020 Labels) here and the detailed description is available here. Put the BDD100K data under datasets/ in this repo. After downloading the data, the folder structure should be like below:
├── datasets
│   ├── bdd100k
│   │   ├── images
│   │   │    └── track
│   │   │        ├── train
│   │   │        ├── val
│   │   │        └── test
│   │   └── labels
│   │        ├── box_track_20
│   │        │   ├── train
│   │        │   └── val
│   │        └── det_20
│   │            ├── det_train.json
│   │            └── det_val.json
│   ├── waymo

Convert the labels of the MOT 2020 data (train & val sets) into COCO format by running:

python3 datasets/bdd100k2coco.py -i datasets/bdd100k/labels/box_track_20/val/ -o datasets/bdd100k/labels/track/bdd100k_mot_val_coco.json -m track
python3 datasets/bdd100k2coco.py -i datasets/bdd100k/labels/box_track_20/train/ -o datasets/bdd100k/labels/track/bdd100k_mot_train_coco.json -m track
  1. Split the original videos into different domains (time of day). Run the following command:
python3 -m datasets.domain_splits_bdd100k

This script will first extract the domain attributes from the BDD100K detection set and then map them to the tracking set sequences. After the processing steps, you would see two additional folders domain_splits and per_seq under the datasets/bdd100k/labels/box_track_20. The domain splits of all attributes in BDD100K detection set can be found at datasets/bdd100k/labels/domain_splits.

Waymo

  1. Download the Waymo dataset here. Put the Waymo raw data under datasets/ in this repo. After downloading the data, the folder structure should be like below:
├── datasets
│   ├── bdd100k
│   ├── waymo
│   │   └── raw

Convert the raw TFRecord data files into COCO format by running:

python3 -m datasets.waymo2coco

Note that this script takes a long time to run, be prepared to keep it running for over a day.

  1. Convert the BDD100K dataset labels into 3 classes (originally 8). This needs to be done in order to match the 3 classes of the Waymo dataset. Run the following command:
python3 -m datasets.convert_bdd_3cls

Get Started

For joint training,

python3 -m tools.train_net --config-file [config_file] --num-gpus 8

For evaluation,

python3 -m tools.train_net --config-file [config_file] --num-gpus [num] --eval-only

This command will load the latest checkpoint in the folder. If you want to specify a different checkpoint or evaluate the pretrained checkpoints, you can run

python3 -m tools.train_net --config-file [config_file] --num-gpus [num] --eval-only MODEL.WEIGHTS [PATH_TO_CHECKPOINT]

Benchmark Results

Dataset Statistics

Dataset Split Seq frames/seq. boxes classes
BDD100K Daytime train 757 204 1.82M 8
val 108 204 287K 8
BDD100K Night train 564 204 895K 8
val 71 204 137K 8
Waymo Open Data train 798 199 3.64M 3
val 202 199 886K 3

Out of Domain Evaluation

BDD100K Daytime to Night. The base detector is Faster R-CNN with ResNet-50.

Model AP AP50 AP75 APs APm APl Config Checkpoint
Faster R-CNN 17.84 31.35 17.68 4.92 16.15 35.56 link link
+ Rotation 18.58 32.95 18.15 5.16 16.93 36.00 link link
+ Jigsaw 17.47 31.22 16.81 5.08 15.80 33.84 link link
+ Cycle Consistency 18.35 32.44 18.07 5.04 17.07 34.85 link link
+ Cycle Confusion 19.09 33.58 19.14 5.70 17.68 35.86 link link

BDD100K Night to Daytime.

Model AP AP50 AP75 APs APm APl Config Checkpoint
Faster R-CNN 19.14 33.04 19.16 5.38 21.42 40.34 link link
+ Rotation 19.07 33.25 18.83 5.53 21.32 40.06 link link
+ Jigsaw 19.22 33.87 18.71 5.67 22.35 38.57 link link
+ Cycle Consistency 18.89 33.50 18.31 5.82 21.01 39.13 link link
+ Cycle Confusion 19.57 34.34 19.26 6.06 22.55 38.95 link link

Waymo Front Left to BDD100K Night.

Model AP AP50 AP75 APs APm APl Config Checkpoint
Faster R-CNN 10.07 19.62 9.05 2.67 10.81 18.62 link link
+ Rotation 11.34 23.12 9.65 3.53 11.73 21.60 link link
+ Jigsaw 9.86 19.93 8.40 2.77 10.53 18.82 link link
+ Cycle Consistency 11.55 23.44 10.00 2.96 12.19 21.99 link link
+ Cycle Confusion 12.27 26.01 10.24 3.44 12.22 23.56 link link

Waymo Front Right to BDD100K Night.

Model AP AP50 AP75 APs APm APl Config Checkpoint
Faster R-CNN 8.65 17.26 7.49 1.76 8.29 19.99 link link
+ Rotation 9.25 18.48 8.08 1.85 8.71 21.08 link link
+ Jigsaw 8.34 16.58 7.26 1.61 8.01 18.09 link link
+ Cycle Consistency 9.11 17.92 7.98 1.78 9.36 19.18 link link
+ Cycle Confusion 9.99 20.58 8.30 2.18 10.25 20.54 link link

Citation

If you find this repository useful for your publications, please consider citing our paper.

@article{wang2021robust,
  title={Robust Object Detection via Instance-Level Temporal Cycle Confusion},
  author={Wang, Xin and Huang, Thomas E and Liu, Benlin and Yu, Fisher and Wang, Xiaolong and Gonzalez, Joseph E and Darrell, Trevor},
  journal={International Conference on Computer Vision (ICCV)},
  year={2021}
}
Owner
Xin Wang
Researcher from Microsoft Research. Prev. Ph.D. student at UC Berkeley.
Xin Wang
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023