Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Overview

Learned NDV estimator

Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maximum likelihood estimation of NDV, which is difficult to obtain analytically. See our VLDB 2022 paper Learning to be a Statistician: Learned Estimator for Number of Distinct Values for more details.

How to use

  1. Install the package

    pip install estndv

  2. Import and create an instance

   from estndv import ndvEstimator
   estimator = ndvEstimator()
  1. Assume your sample is S=[1,1,1,3,5,5,12] and the population size is N=100000. You can estimate population ndv by:

    ndv = estimator.sample_predict(S=[1,1,1,3,5,5,12], N=100000)

  2. If you have the sample profile e.g. f=[2,1,1], you can estimate population NDV by:

    ndv = estimator.profile_predict(f=[2,1,1], N=100000)

  3. If you have multiple samples/profiles from multiple populations, you can estimate population NDV for all of them in a batch by method estimator.sample_predict_batch() or estimator.profile_predict_batch().

How to train the ndv estimator

You can directly use our package on PyPI for your datasets, as the pre-trained model is agnostic to any workloads. However, if you want to train the model from scratch anyway, do the following:

  1. Go to the model_training folder cd model_training

  2. Install requirements

    pip install requirements.txt

  3. Generate training data. (This uses a lot of memory.)

    python training_data_generation.py

  4. Train model

    python model_training.py

  5. Save trained pytorch model parameters to numpy, this generates a file model_paras.npy

    python torch2npy.py

  6. Test with your model parameters by specifying a path to your model_paras.npy

    estimator = ndvEstimator(para_path=your path to model_paras.npy)

Citation

If you use our work or found it useful, please cite our paper:

@article{wu2022learning,
   author = {Wu, Renzhi and Ding, Bolin and Chu, Xu and Wei, Zhewei and Dai, Xiening and Guan, Tao and Zhou, Jingren},
   title = {Learning to Be a Statistician: Learned Estimator for Number of Distinct Values},
   year = {2021},
   issue_date = {October 2021},
   publisher = {VLDB Endowment},
   volume = {15},
   number = {2},
   issn = {2150-8097},
   url = {https://doi.org/10.14778/3489496.3489508},
   doi = {10.14778/3489496.3489508},
   journal = {Proc. VLDB Endow.},
   month = {oct},
   pages = {272–284},
   numpages = {13}
}
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022