The code is the training example of AAAI2022 Security AI Challenger Program Phase 8: Data Centric Robot Learning on ML models.

Overview

中文版 | English

使用方法

该代码是AAAI2022 安全AI挑战者计划第八期:Data-Centric Robust Learning on ML Models的训练示例。选手可简单的使用以下两条命令训练resnet50以及densenet121模型:

git clone https://github.com/vtddggg/training_template_for_AI_challenger_sea8.git && cd training_template_for_AI_challenger_sea8
sh train.sh

运行完成后,会在当前路径下产生Dataset.zip文件,选手可直接上传该文件作为官方提供的baseline成绩

注意

为了重现训练过程,代码中的所有random seed已经固定,我们鼓励选手在新版本的pytorch上进行训练。推荐使用pytorch官方docker:pytorch/pytorch:1.8.1-cuda10.2-cudnn7-runtime

我们公开了在GeForce RTX 2080Ti上的训练日志,需要注意在不同型号的GPU设备上训练可能会产生略有差异的结果,这些小差异在最终做成绩验证时可忽略

创建自己的提交

选手必须提交一个压缩包(包含data.npy, label.npy, config.py, resnet50.pth.tar以及densenet121.pth.tar),这5个文件分别通过以下步骤生成:

  1. data.npy, label.npy, config.py三个文件可由选手自己创建和修改,作为自定义的训练数据和config,但需要满足赛题中给出的限制。除了训练数据和config,另外在training_template_for_AI_challenger_sea8目录下的训练代码.py文件均固定,不可擅自改动。

  2. 将以上三个文件替换到training_template_for_AI_challenger_sea8中,执行sh train.sh训练

  3. 训练完毕后,将生成的Dataset.zip提交至比赛页面

需要注意的是,在测试提交结束后,我们会验证选手的训练结果,因此,请时刻注意压缩包中的resnet50.pth.tardensenet121.pth.tar确实是由对应的data.npy, label.npy, config.py训练生成的

感谢大家的参与,最后预祝各位参赛选手取得好成绩!

Owner
Student
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022