InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Overview

InsightFace: 2D and 3D Face Analysis Project

By Jia Guo and Jiankang Deng

Top News

2021-06-05: We launch a Masked Face Recognition Challenge & Workshop on ICCV 2021.

2021-05-15: We released an efficient high accuracy face detection approach called SCRFD.

2021-04-18: We achieved Rank-4th on NIST-FRVT 1:1, see leaderboard.

2021-03-13: We have released our official ArcFace PyTorch implementation, see here.

License

The code of InsightFace is released under the MIT License. There is no limitation for both academic and commercial usage.

The training data containing the annotation (and the models trained with these data) are available for non-commercial research purposes only.

Introduction

InsightFace is an open source 2D&3D deep face analysis toolbox, mainly based on MXNet and PyTorch.

The master branch works with MXNet 1.2 to 1.6, PyTorch 1.6+, with Python 3.x.

ArcFace Video Demo

ArcFace Demo

Please click the image to watch the Youtube video. For Bilibili users, click here.

Recent Update

2021-06-05: We launch a Masked Face Recognition Challenge & Workshop on ICCV 2021.

2021-05-15: We released an efficient high accuracy face detection approach called SCRFD.

2021-04-18: We achieved Rank-4th on NIST-FRVT 1:1, see leaderboard.

2021-03-13: We have released our official ArcFace PyTorch implementation, see here.

2021-03-09: Tips for training large-scale face recognition model, such as millions of IDs(classes).

2021-02-21: We provide a simple face mask renderer here which can be used as a data augmentation tool while training face recognition models.

2021-01-20: OneFlow based implementation of ArcFace and Partial-FC, here.

2020-10-13: A new training method and one large training set(360K IDs) were released here by DeepGlint.

2020-10-09: We opened a large scale recognition test benchmark IFRT

2020-08-01: We released lightweight facial landmark models with fast coordinate regression(106 points). See detail here.

2020-04-27: InsightFace pretrained models and MS1M-Arcface are now specified as the only external training dataset, for iQIYI iCartoonFace challenge, see detail here.

2020.02.21: Instant discussion group created on QQ with group-id: 711302608. For English developers, see install tutorial here.

2020.02.16: RetinaFace now can detect faces with mask, for anti-CoVID19, see detail here

2019.08.10: We achieved 2nd place at WIDER Face Detection Challenge 2019.

2019.05.30: Presentation at cvmart

2019.04.30: Our Face detector (RetinaFace) obtains state-of-the-art results on the WiderFace dataset.

2019.04.14: We will launch a Light-weight Face Recognition challenge/workshop on ICCV 2019.

2019.04.04: Arcface achieved state-of-the-art performance (7/109) on the NIST Face Recognition Vendor Test (FRVT) (1:1 verification) report (name: Imperial-000 and Imperial-001). Our solution is based on [MS1MV2+DeepGlintAsian, ResNet100, ArcFace loss].

2019.02.08: Please check https://github.com/deepinsight/insightface/tree/master/recognition/ArcFace for our parallel training code which can easily and efficiently support one million identities on a single machine (8* 1080ti).

2018.12.13: Inference acceleration TVM-Benchmark.

2018.10.28: Light-weight attribute model Gender-Age. About 1MB, 10ms on single CPU core. Gender accuracy 96% on validation set and 4.1 age MAE.

2018.10.16: We achieved state-of-the-art performance on Trillionpairs (name: nttstar) and IQIYI_VID (name: WitcheR).

Contents

Deep Face Recognition

Face Detection

Face Alignment

Citation

Contact

Deep Face Recognition

Introduction

In this module, we provide training data, network settings and loss designs for deep face recognition. The training data includes, but not limited to the cleaned MS1M, VGG2 and CASIA-Webface datasets, which were already packed in MXNet binary format. The network backbones include ResNet, MobilefaceNet, MobileNet, InceptionResNet_v2, DenseNet, etc.. The loss functions include Softmax, SphereFace, CosineFace, ArcFace, Sub-Center ArcFace and Triplet (Euclidean/Angular) Loss.

You can check the detail page of our work ArcFace(which accepted in CVPR-2019) and SubCenter-ArcFace(which accepted in ECCV-2020).

margin penalty for target logit

Our method, ArcFace, was initially described in an arXiv technical report. By using this module, you can simply achieve LFW 99.83%+ and Megaface 98%+ by a single model. This module can help researcher/engineer to develop deep face recognition algorithms quickly by only two steps: download the binary dataset and run the training script.

Training Data

All face images are aligned by ficial five landmarks and cropped to 112x112:

Please check Dataset-Zoo for detail information and dataset downloading.

  • Please check recognition/tools/face2rec2.py on how to build a binary face dataset. You can either choose MTCNN or RetinaFace to align the faces.

Train

  1. Install MXNet with GPU support (Python 3.X).
pip install mxnet-cu101 # which should match your installed cuda version
  1. Clone the InsightFace repository. We call the directory insightface as INSIGHTFACE_ROOT.
git clone --recursive https://github.com/deepinsight/insightface.git
  1. Download the training set (MS1M-Arcface) and place it in $INSIGHTFACE_ROOT/recognition/datasets/. Each training dataset includes at least following 6 files:
    faces_emore/
       train.idx
       train.rec
       property
       lfw.bin
       cfp_fp.bin
       agedb_30.bin

The first three files are the training dataset while the last three files are verification sets.

  1. Train deep face recognition models. In this part, we assume you are in the directory $INSIGHTFACE_ROOT/recognition/ArcFace/.

Place and edit config file:

cp sample_config.py config.py
vim config.py # edit dataset path etc..

We give some examples below. Our experiments were conducted on the Tesla P40 GPU.

(1). Train ArcFace with LResNet100E-IR.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r100 --loss arcface --dataset emore

It will output verification results of LFW, CFP-FP and AgeDB-30 every 2000 batches. You can check all options in config.py. This model can achieve LFW 99.83+ and MegaFace 98.3%+.

(2). Train CosineFace with LResNet50E-IR.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r50 --loss cosface --dataset emore

(3). Train Softmax with LMobileNet-GAP.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network m1 --loss softmax --dataset emore

(4). Fine-turn the above Softmax model with Triplet loss.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network m1 --loss triplet --lr 0.005 --pretrained ./models/m1-softmax-emore,1

(5). Training in model parallel acceleration.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train_parall.py --network r100 --loss arcface --dataset emore
  1. Verification results.

LResNet100E-IR network trained on MS1M-Arcface dataset with ArcFace loss:

Method LFW(%) CFP-FP(%) AgeDB-30(%)
Ours 99.80+ 98.0+ 98.20+

Pretrained Models

You can use $INSIGHTFACE_ROOT/recognition/arcface_torch/eval/verification.py to test all the pre-trained models.

Please check Model-Zoo for more pretrained models.

Verification Results on Combined Margin

A combined margin method was proposed as a function of target logits value and original θ:

COM(θ) = cos(m_1*θ+m_2) - m_3

For training with m1=1.0, m2=0.3, m3=0.2, run following command:

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r100 --loss combined --dataset emore

Results by using MS1M-IBUG(MS1M-V1)

Method m1 m2 m3 LFW CFP-FP AgeDB-30
W&F Norm Softmax 1 0 0 99.28 88.50 95.13
SphereFace 1.5 0 0 99.76 94.17 97.30
CosineFace 1 0 0.35 99.80 94.4 97.91
ArcFace 1 0.5 0 99.83 94.04 98.08
Combined Margin 1.2 0.4 0 99.80 94.08 98.05
Combined Margin 1.1 0 0.35 99.81 94.50 98.08
Combined Margin 1 0.3 0.2 99.83 94.51 98.13
Combined Margin 0.9 0.4 0.15 99.83 94.20 98.16

Test on MegaFace

Please check $INSIGHTFACE_ROOT/evaluation/megaface/ to evaluate the model accuracy on Megaface. All aligned images were already provided.

512-D Feature Embedding

In this part, we assume you are in the directory $INSIGHTFACE_ROOT/deploy/. The input face image should be generally centre cropped. We use RNet+ONet of MTCNN to further align the image before sending it to the feature embedding network.

  1. Prepare a pre-trained model.
  2. Put the model under $INSIGHTFACE_ROOT/models/. For example, $INSIGHTFACE_ROOT/models/model-r100-ii.
  3. Run the test script $INSIGHTFACE_ROOT/deploy/test.py.

For single cropped face image(112x112), total inference time is only 17ms on our testing server(Intel E5-2660 @ 2.00GHz, Tesla M40, LResNet34E-IR).

Third-party Re-implementation

Face Detection

RetinaFace

RetinaFace is a practical single-stage SOTA face detector which is initially introduced in arXiv technical report and then accepted by CVPR 2020. We provide training code, training dataset, pretrained models and evaluation scripts.

demoimg1

Please check RetinaFace for detail.

RetinaFaceAntiCov

RetinaFaceAntiCov is an experimental module to identify face boxes with masks. Please check RetinaFaceAntiCov for detail.

demoimg1

Face Alignment

DenseUNet

Please check the Menpo Benchmark and our Dense U-Net for detail. We also provide other network settings such as classic hourglass. You can find all of training code, training dataset and evaluation scripts there.

CoordinateReg

On the other hand, in contrast to heatmap based approaches, we provide some lightweight facial landmark models with fast coordinate regression. The input of these models is loose cropped face image while the output is the direct landmark coordinates. See detail at alignment-coordinateReg. Now only pretrained models available.

imagevis
videovis

Citation

If you find InsightFace useful in your research, please consider to cite the following related papers:

@inproceedings{deng2019retinaface,
title={RetinaFace: Single-stage Dense Face Localisation in the Wild},
author={Deng, Jiankang and Guo, Jia and Yuxiang, Zhou and Jinke Yu and Irene Kotsia and Zafeiriou, Stefanos},
booktitle={arxiv},
year={2019}
}

@inproceedings{guo2018stacked,
  title={Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment},
  author={Guo, Jia and Deng, Jiankang and Xue, Niannan and Zafeiriou, Stefanos},
  booktitle={BMVC},
  year={2018}
}

@article{deng2018menpo,
  title={The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking},
  author={Deng, Jiankang and Roussos, Anastasios and Chrysos, Grigorios and Ververas, Evangelos and Kotsia, Irene and Shen, Jie and Zafeiriou, Stefanos},
  journal={IJCV},
  year={2018}
}

@inproceedings{deng2018arcface,
title={ArcFace: Additive Angular Margin Loss for Deep Face Recognition},
author={Deng, Jiankang and Guo, Jia and Niannan, Xue and Zafeiriou, Stefanos},
booktitle={CVPR},
year={2019}
}

Contact

[Jia Guo](guojia[at]gmail.com)
[Jiankang Deng](jiankangdeng[at]gmail.com)
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022