Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Overview

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

[Project Page] [Paper] [Supp. Mat.]

SMPL-X Examples

Table of Contents

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the terms and conditions and any accompanying documentation before you download and/or use the SMPL-X/SMPLify-X model, data and software, (the "Model & Software"), including 3D meshes, blend weights, blend shapes, textures, software, scripts, and animations. By downloading and/or using the Model & Software (including downloading, cloning, installing, and any other use of this github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Model & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Disclaimer

The original images used for the figures 1 and 2 of the paper can be found in this link. The images in the paper are used under license from gettyimages.com. We have acquired the right to use them in the publication, but redistribution is not allowed. Please follow the instructions on the given link to acquire right of usage. Our results are obtained on the 483 × 724 pixels resolution of the original images.

Description

This repository contains the fitting code used for the experiments in Expressive Body Capture: 3D Hands, Face, and Body from a Single Image.

Fitting

Run the following command to execute the code:

python smplifyx/main.py --config cfg_files/fit_smplx.yaml 
    --data_folder DATA_FOLDER 
    --output_folder OUTPUT_FOLDER 
    --visualize="True/False"
    --model_folder MODEL_FOLDER
    --vposer_ckpt VPOSER_FOLDER
    --part_segm_fn smplx_parts_segm.pkl

where the DATA_FOLDER should contain two subfolders, images, where the images are located, and keypoints, where the OpenPose output should be stored.

Different Body Models

To fit SMPL or SMPL+H, replace the yaml configuration file with either fit_smpl.yaml or fit_smplx.yaml, i.e.:

  • for SMPL:
python smplifyx/main.py --config cfg_files/fit_smpl.yaml 
   --data_folder DATA_FOLDER 
   --output_folder OUTPUT_FOLDER 
   --visualize="True/False"
   --model_folder MODEL_FOLDER
   --vposer_ckpt VPOSER_FOLDER
  • for SMPL+H:
python smplifyx/main.py --config cfg_files/fit_smplh.yaml 
   --data_folder DATA_FOLDER 
   --output_folder OUTPUT_FOLDER 
   --visualize="True/False"
   --model_folder MODEL_FOLDER
   --vposer_ckpt VPOSER_FOLDER

Visualizing Results

To visualize the results produced by the method you can run the following script:

python smplifyx/render_results.py --mesh_fns OUTPUT_MESH_FOLDER

where OUTPUT_MESH_FOLDER is the folder that contains the resulting meshes.

Dependencies

Follow the installation instructions for each of the following before using the fitting code.

  1. PyTorch
  2. SMPL-X
  3. VPoser
  4. Homogenus

Optional Dependencies

  1. PyTorch Mesh self-intersection for interpenetration penalty
  2. Trimesh for loading triangular meshes
  3. Pyrender for visualization

The code has been tested with Python 3.6, CUDA 10.0, CuDNN 7.3 and PyTorch 1.0 on Ubuntu 18.04.

Citation

If you find this Model & Software useful in your research we would kindly ask you to cite:

@inproceedings{SMPL-X:2019,
  title = {Expressive Body Capture: 3D Hands, Face, and Body from a Single Image},
  author = {Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart, Timo and Osman, Ahmed A. A. and Tzionas, Dimitrios and Black, Michael J.},
  booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
  year = {2019}
}

Acknowledgments

LBFGS with Strong Wolfe Line Search

The LBFGS optimizer with Strong Wolfe Line search is taken from this Pytorch pull request. Special thanks to Du Phan for implementing this. We will update the repository once the pull request is merged.

Contact

The code of this repository was implemented by Vassilis Choutas and Georgios Pavlakos.

For questions, please contact [email protected].

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Vassilis Choutas
Ph.D. Student, Perceiving Systems, Max Planck ETH Center for Learning Systems
Vassilis Choutas
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022