CRISP: Critical Path Analysis of Microservice Traces

Related tags

Data AnalysisCRISP
Overview

CRISP: Critical Path Analysis of Microservice Traces

This repo contains code to compute and present critical path summary from Jaeger microservice traces. To use first collect the microservice traces of a specific endpoint in a directory (say traces). Let the traces be for OP operation and SVC service (these are Jaeger termonologies). python3 process.py --operationName OP --serviceName SVC -t <path to trace> -o . --parallelism 8 will produce the critical path summary using 8 concurrent processes. The summary will be output in the current directory as an HTML file with a heatmap, flamegraph, and summary text in criticalPaths.html. It will also produce three flamegraphs flame-graph-*.svg for three different percentile values.

The script accepts the following options:

python3 process.py --help
usage: process.py [-h] -a OPERATIONNAME -s SERVICENAME [-t TRACEDIR] [--file FILE] -o OUTPUTDIR
                  [--parallelism PARALLELISM] [--topN TOPN] [--numTrace NUMTRACE] [--numOperation NUMOPERATION]

optional arguments:
  -h, --help            show this help message and exit
  -a OPERATIONNAME, --operationName OPERATIONNAME
                        operation name
  -s SERVICENAME, --serviceName SERVICENAME
                        name of the service
  -t TRACEDIR, --traceDir TRACEDIR
                        path of the trace directory (mutually exclusive with --file)
  --file FILE           input path of the trace file (mutually exclusivbe with --traceDir)
  -o OUTPUTDIR, --outputDir OUTPUTDIR
                        directory where output will be produced
  --parallelism PARALLELISM
                        number of concurrent python processes.
  --topN TOPN           number of services to show in the summary
  --numTrace NUMTRACE   number of traces to show in the heatmap
  --numOperation NUMOPERATION
                        number of operations to show in the heatmap
Owner
Uber Research
Uber's research projects. Projects in this organization are not built for production usage. Maintainance and supports are limited.
Uber Research
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
simple way to build the declarative and destributed data pipelines with python

unipipeline simple way to build the declarative and distributed data pipelines. Why you should use it Declarative strict config Scaffolding Fully type

aliaksandr-master 0 Jan 26, 2022
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
VevestaX is an open source Python package for ML Engineers and Data Scientists.

VevestaX Track failed and successful experiments as well as features. VevestaX is an open source Python package for ML Engineers and Data Scientists.

Vevesta 24 Dec 14, 2022
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
Implementation in Python of the reliability measures such as Omega.

OmegaPy Summary Simple implementation in Python of the reliability measures: Omega Total, Omega Hierarchical and Omega Hierarchical Total. Name Link O

Rafael Valero Fernández 2 Apr 27, 2022
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data

Statistical_Modelling Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data Statistical Methods for Decision Ma

Avnika Mehta 1 Jan 27, 2022
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

Materials Discovery Group 61 Oct 02, 2022
Analysis scripts for QG equations

qg-edgeofchaos Analysis scripts for QG equations FIle/Folder Structure eigensolvers.py - Spectral and finite-difference solvers for Rossby wave eigenf

Norman Cao 2 Sep 27, 2022
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
Convert monolithic Jupyter notebooks into Ploomber pipelines.

Soorgeon Join our community | Newsletter | Contact us | Blog | Website | YouTube Convert monolithic Jupyter notebooks into Ploomber pipelines. soorgeo

Ploomber 65 Dec 16, 2022
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022