Feature Detection Based Template Matching

Overview

Feature Detection Based Template Matching

The classification of the photos was made using the OpenCv template Matching method.

Installation

Use the package manager pip to install OpenCV and Matplotlib

pip install opencv-python
pip install matplotlib

Code Review

Loading Images

'''Taking all images that we want to classify for them'''
path= "..\\FeatureBasedTemplateMatching\\Class\\"
images = []
classname = []
image_list = os.listdir(path)

Creating Classes

'''Creating classes via image names'''
for clss in image_list:
    imgCurrent = cv2.imread(f'{path}{clss}',0)
    images.append(imgCurrent)
    classname.append(os.path.splitext(clss)[0])

Creating ORB Object

About ORB

'''Creating ORB object'''#Fast and Free to use
orb = cv2.ORB_create()

Finding all Decriptors

Computed descriptors. Output concatenated vectors of descriptors. Each descriptor is a 32-element vector, as returned by cv.ORB.descriptorSize, so the total size of descriptors will be numel(keypoints) * obj.descriptorSize(), i.e a matrix of size N-by-32 of class uint8, one row per keypoint.

'''Finding All Descriptors'''
def findDesc(images):
    descList = []
    for image in images:
        kp,desc = orb.detectAndCompute(image,None)
        descList.append(desc)
    return descList

Finding Detection Image ID

'''Finding image id via using descritor list'''
def findID(img, descList):
    kp2, desc2 = orb.detectAndCompute(img,None)
    bf = cv2.BFMatcher()
    matchList = []
    finalval = -1
    try:
        for des in descList:
            matches = bf.knnMatch(des,desc2,k=2)
            goodmatches = []
            for m, n in matches:
                if m.distance < 0.75 * n.distance:
                    goodmatches.append([m])
            matchList.append(len(goodmatches))
    except:
        pass
    if matchList:
        if max(matchList) > TRESHOLD:
            finalval = matchList.index(max(matchList))
    return finalval

Detection

'''Image that we want to detect'''
detection_image = cv2.imread("..\\FeatureBasedTemplateMatching\\10kmmatch.jpg")
img_gray = cv2.cvtColor(detection_image,cv2.COLOR_BGR2GRAY)


descList = findDesc(images)
id =findID(img_gray,descList)

if id != -1:
    cv2.putText(detection_image,classname[id],(50,50),cv2.FONT_HERSHEY_PLAIN,5,(255,0,0),3)

Output

alt text

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT

Owner
Muhammet Erem
Muhammet Erem
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023
Powerful, efficient particle trajectory analysis in scientific Python.

freud Overview The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics

Glotzer Group 195 Dec 20, 2022
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
Important dataframe statistics with a single command

quick_eda Receiving dataframe statistics with one command Project description A python package for Data Scientists, Students, ML Engineers and anyone

Sven Eschlbeck 2 Dec 19, 2021
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
An Integrated Experimental Platform for time series data anomaly detection.

Curve Sorry to tell contributors and users. We decided to archive the project temporarily due to the employee work plan of collaborators. There are no

Baidu 486 Dec 21, 2022
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
Weather Image Recognition - Python weather application using series of data

Weather Image Recognition - Python weather application using series of data

Kushal Shingote 1 Feb 04, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
DataPrep — The easiest way to prepare data in Python

DataPrep — The easiest way to prepare data in Python

SFU Database Group 1.5k Dec 27, 2022
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine

Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine Intro This repo contains the python/stan version of the Statistical Rethinking

Andrés Suárez 3 Nov 08, 2022
Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which he recommends to buy. We will use this data to build a portfolio

Backtesting the "Cramer Effect" & Recommendations from Cramer Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which

Gábor Vecsei 12 Aug 30, 2022
CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner.

CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner. It is aimed to integrate this tool with several more features including providing a U

Ravi Prakash 3 Jun 27, 2021
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022