Creating a statistical model to predict 10 year treasury yields

Overview

Predicting 10-Year Treasury Yields

Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had a tangible impact on 10-Year Treasury yields (data source). Below are the results of my exploration of the VIX's effect on 10Y yields:

Line Graph Comparing VIX Price and Yield over the last 31 years

VIX and Yield TS

As can be seen in the above graph, there doesn't seem to be much correlation off the bat, simply looking at their annual trends. Overall, yields seem to have dropped quite dramatically over the last 31 years, with not much reaction to major changes in volatility. Meanwhile, VIX has had a more dramatic journey, with plenty of large ups and downs. Although it doesn't seem like much of a correlation from this view, it would be more beneficial to look at a scatter plot and create a regression line to be sure.

VIX vs. Yield Scatter Plot

VIX vs. Yield

The red line in the scatter plot is the regression line obtained. The regression line seems to be slanted downward, indicating a negative effect. This means that when the volatility in the stock market goes up, 10Y Treasury yields go down. The regression equation: 10-Year Treasury Yield = 4.71 + -0.02(VIX Price) indicates that an increase of $1 US in the VIX price would cause the yield to go down by 0.02 percentage points. Since the VIX price will never be $0, it does not make sense to interpret the y-intercept of 4.71. Thus, based on this scatter plot, and the fact that there is a slope to regression line, there may be a significant impact on yield by the price of VIX. However, to check if it is statistically significant, the t-statistic is needed.

Stata Analysis

Thus, I decided to run some statistical analysis in stata, contained here. The first regression I ran was between VIX Price and 10Y yields to see if there was any statistically significant effect of stock volatility on yields. When checking for statistical significance in the 5% size, the t-statistic of the coefficient must be either above 1.96 or below -1.96 to be considered significant. In this case, the t-statistic was -1.46, which meant that the stock volatility was not statistically significant.

...Not so fast. One issue with trying to simplify trends in this way is that omitted variables could play a big part in the statistical significance of present variables. Thus, I decided to use 4 more key macroeconomical datasets: unemployment rate, interest rate, change in CPI, and inflationary expectations. With these 4 key parts of the economy accounted for, I ran another regression, including all of the variables against the yield.

The new data was quite interesting. I had expected the change in CPI and inflationary expectations to be really important factors, but it turns out they are statistically insignificant. The t-statistic for change in CPI was 0.12 and for inflationary expectations was -1.71, short of the 1.96 and -1.96 thresholds required respectively. On the other hand, the t-statistic for the VIX Price dropped to -3.49, meaning that some of the variables that were added to the model were in fact invisibly impacting the effects of the volatility. The unemployment rate and interest rate were both statistically significant, with t-statistics of 10.99 and 37.20 respectively. Overall, 80.19% of the variation in the 10-Year Treasury yield could be explained by my model.

Interest Rate vs. 10-Year Treasury Yield Graph

ir vs. yield

Having seen the graph of a statistically insignificant variable (pre-multiple regression), I wanted to plot a scatter plot of an extremely significant variable to see the contrast. It is clear that there is a clear positive relationship between interest rate and the 10-Year Treasury yield. The regression line: 10-Year Treasury Yield = 2.31 + 0.73(Interest Rate) indicates that an increase in interest rate of 1 percentage point leads to a 0.73 percentage point increase in the yield. It is possible for rates to come down to 0, so the y-intercept indicates that the 10Y Treasury Note yields 2.31% when the interest rate hits 0. The constrast between the two red regression lines, as well as the distribution of the dots shown in the two scatter plots is quite clear, indicating how statistically significant the two variables are comparitavely.

Project instructions

10Y Treasury data citation:

OECD, "Main Economic Indicators - complete database", Main Economic Indicators (database),http://dx.doi.org/10.1787/data-00052-en (October 23, 2021) Copyright, 2016, OECD. Reprinted with permission.

Change in CPI data citation:

OECD, "Main Economic Indicators - complete database", Main Economic Indicators (database),http://dx.doi.org/10.1787/data-00052-en (October 23, 2021) Copyright, 2016, OECD. Reprinted with permission.

Inflation Expectation data citation:

Surveys of Consumers, University of Michigan, University of Michigan: Inflation Expectation© [MICH], retrieved from FRED, Federal Reserve Bank of St. Louis https://fred.stlouisfed.org/series/MICH/, (October 23, 2021)

DataPrep — The easiest way to prepare data in Python

DataPrep — The easiest way to prepare data in Python

SFU Database Group 1.5k Dec 27, 2022
Binance Kline Data With Python

Binance Kline Data by seunghan(gingerthorp) reference https://github.com/binance/binance-public-data/ All intervals are supported: 1m, 3m, 5m, 15m, 30

shquant 5 Jul 13, 2022
Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medica

10 May 10, 2022
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
Handle, manipulate, and convert data with units in Python

unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return

The yt project 304 Jan 02, 2023
Analysis scripts for QG equations

qg-edgeofchaos Analysis scripts for QG equations FIle/Folder Structure eigensolvers.py - Spectral and finite-difference solvers for Rossby wave eigenf

Norman Cao 2 Sep 27, 2022
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
ELFXtract is an automated analysis tool used for enumerating ELF binaries

ELFXtract ELFXtract is an automated analysis tool used for enumerating ELF binaries Powered by Radare2 and r2ghidra This is specially developed for PW

Monish Kumar 49 Nov 28, 2022
bigdata_analyse 大数据分析项目

bigdata_analyse 大数据分析项目 wish 采用不同的技术栈,通过对不同行业的数据集进行分析,期望达到以下目标: 了解不同领域的业务分析指标 深化数据处理、数据分析、数据可视化能力 增加大数据批处理、流处理的实践经验 增加数据挖掘的实践经验

Way 2.4k Dec 30, 2022
track your GitHub statistics

GitHub-Stalker track your github statistics 👀 features find new followers or unfollowers find who got a star on your project or remove stars find who

Bahadır Araz 34 Nov 18, 2022
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
Fancy data functions that will make your life as a data scientist easier.

WhiteBox Utilities Toolkit: Tools to make your life easier Fancy data functions that will make your life as a data scientist easier. Installing To ins

WhiteBox 3 Oct 03, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase working capital.

Overview OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase

Tom 3 Feb 12, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023