Tensorflow implementation of soft-attention mechanism for video caption generation.

Overview

SA-tensorflow

Tensorflow implementation of soft-attention mechanism for video caption generation.

An example of soft-attention mechanism. The attention weight alpha indicates the temporal attention in one video based on each word.

[Yao et al. 2015 Describing Videos by Exploiting Temporal Structure] The original code implemented in Torch can be found here.

Prerequisites

  • Python 2.7
  • Tensorflow >= 0.7.1
  • NumPy
  • pandas
  • keras
  • java 1.8.0

Data

The MSVD [2] dataset can be download from here.

We pack the data into the format of HDF5, where each file is a mini-batch for training and has the following keys:

[u'data', u'fname', u'label', u'title']

batch['data'] stores the visual features. shape (n_step_lstm, batch_size, hidden_dim)

batch['fname'] stores the filenames(no extension) of videos. shape (batch_size)

batch['title'] stores the description. If there are multiple sentences correspond to one video, the other metadata such as visual features, filenames and labels have to duplicate for one-to-one mapping. shape (batch_size)

batch['label'] indicates where the video ends. For instance, [-1., -1., -1., -1., 0., -1., -1.] means that the video ends at index 4.

shape (n_step_lstm, batch_size)

Generate HDF5 data

We generate the HDF5 data by following the steps below. The codes are a little messy. If you have any questions, feel free to ask.

1. Generate Label

Once you change the video_path and output_path, you can generate labels by running the script:

python hdf5_generator/generate_nolabel.py

I set the length of each clip to 10 frames and the maximum length of frames to 450. You can change the parameters in function get_frame_list(frame_num).

2. Pack features together (no caption information)

Inputs:

label_path: The path for the labels generated earlier.

feature_path: The path that stores features such as VGG and C3D. You can change the directory name whatever you want.

Ouputs:

h5py_path: The path that you store the concatenation of different features, the code will automatically put the features in the subdirectory cont

python hdf5_generator/input_generator.py

Note that in function get_feats_depend_on_label(), you can choose whether to take the mean feature or random sample feature of frames in one clip. The random sample script is commented out since the performance is worse.

3. Add captions into HDF5 data

I set the maxmimum number of words in a caption to 35. feature folder is where our final output features store.

python hdf5_generator/trans_video_youtube.py

(The codes here are written by Kuo-Hao)

Generate data list

video_data_path_train = '$ROOTPATH/SA-tensorflow/examples/train_vn.txt'

You can change the path variable to the absolute path of your data. Then simply run python getlist.py to generate the list.

P.S. The filenames of HDF5 data start with train, val, test.

Usage

training

$ python Att.py --task train

testing

Test the model after a certain number of training epochs.

$ python Att.py --task test --net models/model-20

Author

Tseng-Hung Chen

Kuo-Hao Zeng

Disclaimer

We modified the code from this repository jazzsaxmafia/video_to_sequence to the temporal-attention model.

References

[1] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville. Describing videos by exploiting temporal structure. arXiv:1502.08029v4, 2015.

[2] chen:acl11, title = "Collecting Highly Parallel Data for Paraphrase Evaluation", author = "David L. Chen and William B. Dolan", booktitle = "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL-2011)", address = "Portland, OR", month = "June", year = 2011

[3] Microsoft COCO Caption Evaluation

Owner
Paul Chen
Paul Chen
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022