Explaining Hyperparameter Optimization via PDPs

Overview

Explaining Hyperparameter Optimization via PDPs

This repository gives access to an implementation of the methods presented in the paper submission “Explaining Hyperparameter Optimization via PDPs”, as well as all code that was used for the experimental analysis.

This repository is structured as follows:

    ├── analysis/               # Scripts used to create figures and tables in the paper
    ├── data/                   # Location where all experimental data is stored
    │   ├── raw/                # Raw datasets for the DNN surrogate benchmark
    │   ├── runs/               # Individual runs 
    ├── benchmarks/             # Code for experimental analysis (section 6)
    │   ├── synthetic           # Synthetic benchmark (section 6.1)
    │   ├── mlp                 # DNN surrogate benchmark (section 6.2)
    ├── renv/                   # renv configuration files to enable a reproducible setup 
    ├── R/                      # Implementation of methods 
    ├── LICENSE
    └── README.md               

Reproducible Setup

To allow for a proper, reproducible setup of the environment we use the package renv.

The project dependencies can be installed via

library("renv")
renv::restore()

Quick Start

# Loading all scripts we need
source("R/tree_splitting.R")
source("R/helper.R")
source("R/marginal_effect.R")
source("R/plot_functions.R")

First, assume we have a surrogate model that we want to analyze.

Here, for example, we tuned a support vector machine on the iris task, and extracted the surrogate model after the last iteration.

library(mlr)
library(mlrMBO)
library(e1071)
library(BBmisc)
library(data.table)

par.set = makeParamSet(
  makeNumericParam("cost", -10, 4, trafo = function(x) 2^x),
  makeNumericParam("gamma", -10, 4, trafo = function(x) 2^x)
)

ctrl = makeMBOControl()
ctrl = setMBOControlInfill(ctrl, crit = makeMBOInfillCritCB(cb.lambda = 1))
ctrl = setMBOControlTermination(ctrl, iters = 5)
tune.ctrl = makeTuneControlMBO(mbo.control = ctrl)
res = tuneParams(makeLearner("classif.svm"), iris.task, cv3, par.set = par.set, control = tune.ctrl,
  show.info = FALSE)
  
surrogate =  res$mbo.result$models[[1]]

print(surrogate)
FALSE Model for learner.id=regr.km; learner.class=regr.km
FALSE Trained on: task.id = data; obs = 13; features = 2
FALSE Hyperparameters: jitter=TRUE,covtype=matern3_2,optim.method=gen,nugget.estim=TRUE

We are computing the PDP estimate with confidence for hyperparameter cost. We use the marginal_effect_sd_over_mean function, which uses the iml packages.

##        cost      mean         sd
## 1 -9.998017 0.8085137 0.12850346
## 2 -9.261563 0.8223581 0.11260680
## 3 -8.525109 0.8271599 0.09651956
## 4 -7.788655 0.8161618 0.07913981
## 5 -7.052201 0.7814865 0.06697429
## 6 -6.315747 0.7200586 0.06511970

We visualize the outcome:

library(ggplot2)

p = plot_pdp_with_uncertainty_1D(me)
print(p)

To improve the uncertainty estimates, we partition the input space. We perform 2 splits and use the L2-objective.

predictor = Predictor$new(model = surrogate, data = data)
effects = FeatureEffect$new(predictor = predictor, feature = "cost", method = "pdp")

tree = compute_tree(effects, data, "SS_L2", 2)

We now want to visualize the PDP in the node with the best objective after 1 split.

plot_pdp_for_node(node = tree[[2]][[2]], testdata = data, model = surrogate, pdp.feature = "cost", grid.size = 20)

Reproduce Experiments

The steps necessary to reproduce the experiments are described here.

Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Akshat Surolia 2 May 11, 2022
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022