OCR Post Correction for Endangered Language Texts

Overview

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transactions of the Association for Computational Linguistics (TACL)!

Check out the paper here.

OCR Post Correction for Endangered Language Texts

This repository contains code for models and experiments from the paper "OCR Post Correction for Endangered Language Texts".

Textual data in endangered languages is often found in formats that are not machine-readable, including scanned images of paper books. Extracting the text is challenging because there is typically no annotated data to train an OCR system for each endangered language. Instead, we focus on post-correcting the OCR output from a general-purpose OCR system.

📌 In the paper, we present a dataset containing annotations for documents in three critically endangered languages: Ainu, Griko, Yakkha.

📌 Our model reduces the recognition error rate by 34% on average, over a state-of-the-art OCR system.

Learn more about the paper here!

OCR Post-Correction

The goal of OCR post-correction is to automatically correct errors in the text output from an existing OCR system.

The existing OCR system is used to obtain a first pass transcription of the input image (example below in the endangered language Griko):

First pass OCR transcription

The incorrectly recognized characters in the first pass are then corrected by the post-correction model.

Corrected transcription

Model

As seen in the example above, OCR post-correction is a text-based sequence-to-sequence task.

📌 We use a character-level encoder-decoder architecture with attention and add several adaptations for the low-resource setting. The paper has all the details!

📌 The model is trained in a supervised manner. The training data consists of first pass OCR outputs as the source with corresponding manually corrected transcriptions as the target.

📌 Some books that contain texts in endangered languages also contain translations of the text in another (usually high-resource) language. We incorporate an additional encoder in the model, with a multisource framework, to use the information from these translations if they are available.

We provide instructions for both single-source and multisource models:

  • The single-source model can be used for almost any document and is significantly easier to set up.

  • The multisource model can only be used if translations are available.

Dataset

This repository contains a sample from our dataset in sample_dataset, which you can use to train the post-correction model. Get the full dataset here!

However, this repository can be used to train OCR post-correction models for documents in any language!

🚀 If you want to use our model with a new set of documents, construct a dataset by following the steps here.

🚀 We'd love to hear about the new datasets and models you build: send us an email at [email protected]!

Running Experiments

Once you have a suitable dataset (e.g., sample_dataset or your own dataset), you can train a model and run experiments on OCR post-correction.

If you have your own dataset, you can use the utils/prepare_data.py script to create train, development, and test splits (see the last step here).

The steps are described below, illustrated with sample_dataset/postcorrection. If using another dataset, simply change the experiment settings to point to your dataset and run the same scripts.

Requirements

Python 3+ is required. Pip can be used to install the packages:

pip install -r postcorr_requirements.txt

Training

The process of training the post-correction model has two main steps:

  • Pretraining with first pass OCR outputs.
  • Training with manually corrected transcriptions in a supervised manner.

For a single-source model, modify the experimental settings in train_single-source.sh to point to the appropriate dataset and desired output folder. It is currently set up to use sample_dataset.

Then run

bash train_single-source.sh

For multisource, use train_multi-source.sh.

Log files and saved models are written to the user-specified experiment folder for both the pretraining and training steps. For a list of all available hyperparameters and options, look at postcorrection/constants.py and postcorrection/opts.py.

Testing

For testing with a single-source model, modify the experimental settings in test_single-source.sh. It is currently set up to use sample_dataset.

Then run

bash test_single-source.sh

For multisource, use test_multi-source.sh.

Citation

Please cite our paper if this repository was useful.

@inproceedings{rijhwani-etal-2020-ocr,
    title = "{OCR} {P}ost {C}orrection for {E}ndangered {L}anguage {T}exts",
    author = "Rijhwani, Shruti  and
      Anastasopoulos, Antonios  and
      Neubig, Graham",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.478",
    doi = "10.18653/v1/2020.emnlp-main.478",
    pages = "5931--5942",
}

License

Owner
Shruti Rijhwani
Ph.D. student at CMU, working on natural language processing.
Shruti Rijhwani
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022