Official repository accompanying a CVPR 2022 paper EMOCA: Emotion Driven Monocular Face Capture And Animation. EMOCA takes a single image of a face as input and produces a 3D reconstruction. EMOCA sets the new standard on reconstructing highly emotional images in-the-wild

Overview

EMOCA: Emotion Driven Monocular Face Capture and Animation

Radek Daněček · Michael J. Black · Timo Bolkart

CVPR 2022

This repository is the official implementation of the CVPR 2022 paper EMOCA: Emotion-Driven Monocular Face Capture and Animation.

Top row: input images. Middle row: coarse shape reconstruction. Bottom row: reconstruction with detailed displacements.


PyTorch Lightning Project Page Youtube Video Paper PDF

EMOCA takes a single in-the-wild image as input and reconstructs a 3D face with sufficient facial expression detail to convey the emotional state of the input image. EMOCA advances the state-of-the-art monocular face reconstruction in-the-wild, putting emphasis on accurate capture of emotional content. The official project page is here.

EMOCA project

The training and testing script for EMOCA can be found in this subfolder:

EMOCA

Installation

Dependencies

  1. Install conda

  2. Install mamba

  1. Clone this repo

Short version

  1. Run the installation script:
bash install.sh

If this ran without any errors, you now have a functioning conda environment with all the necessary packages to run the demos. If you had issues with the installation script, go through the long version of the installation and see what went wrong. Certain packages (especially for CUDA, PyTorch and PyTorch3D) may cause issues for some users.

Long version

  1. Pull the relevant submodules using:
bash pull_submodules.sh
  1. Set up a conda environment with one of the provided conda files. I recommend using conda-environment_py36_cu11_ubuntu.yml.

You can use mamba to create a conda environment (strongly recommended):

mamba env create python=3.6 --file conda-environment_py36_cu11_ubuntu.yml

but you can also use plain conda if you want (but it will be slower):

conda env create python=3.6 --file conda-environment_py36_cu11_ubuntu.yml

Note: the environment might contain some packages. If you find an environment is missing then just conda/mamba- or pip- install it and please notify me.

  1. Activate the environment:
conda activate work36_cu11
  1. For some reason cython is glitching in the requirements file so install it separately:
pip install Cython==0.29.14
  1. Install gdl using pip install. I recommend using the -e option and I have not tested otherwise.
pip install -e .
  1. Verify that previous step correctly installed Pytorch3D

For some people the compilation fails during requirements install and works after. Try running the following separately:

pip install git+https://github.com/facebookresearch/[email protected]

Pytorch3D installation (which is part of the requirements file) can unfortunately be tricky and machine specific. EMOCA was developed with is Pytorch3D 0.6.0 and the previous command includes its installation from source (to ensure its compatibility with pytorch and CUDA). If it fails to compile, you can try to find another way to install Pytorch3D.

Note: EMOCA was developed with Pytorch 1.9.1 and Pytorch3d 0.6.0 running on CUDA toolkit 11.1.1 with cuDNN 8.0.5. If for some reason installation of these failed on your machine (which can happen), feel free to install these dependencies another way. The most important thing is that version of Pytorch and Pytorch3D match. The version of CUDA is probably less important.

Usage

  1. Activate the environment:
conda activate work36_cu11
  1. For running EMOCA examples, go to EMOCA

  2. For running examples of Emotion Recognition, go to EmotionRecognition

Structure

This repo has two subpackages. gdl and gdl_apps

GDL

gdl is a library full of research code. Some things are OK organized, some things are badly organized. It includes but is not limited to the following:

  • models is a module with (larger) deep learning modules (pytorch based)
  • layers contains individual deep learning layers
  • datasets contains base classes and their implementations for various datasets I had to use at some points. It's mostly image-based datasets with various forms of GT if any
  • utils - various tools

The repo is heavily based on PyTorch and Pytorch Lightning.

GDL_APPS

gdl_apps contains prototypes that use the GDL library. These can include scripts on how to train, evaluate, test and analyze models from gdl and/or data for various tasks.

Look for individual READMEs in each sub-projects.

Current projects:

Citation

If you use this work in your publication, please cite the following publications:

@inproceedings{EMOCA:CVPR:2022,
  title = {{EMOCA}: {E}motion Driven Monocular Face Capture and Animation},
  author = {Danecek, Radek and Black, Michael J. and Bolkart, Timo},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages = {},
  year = {2022}
}

As EMOCA builds on top of DECA and uses parts of DECA as fixed part of the model, please further cite:

@article{DECA:Siggraph2021,
  title={Learning an Animatable Detailed {3D} Face Model from In-The-Wild Images},
  author={Feng, Yao and Feng, Haiwen and Black, Michael J. and Bolkart, Timo},
  journal = {ACM Transactions on Graphics (ToG), Proc. SIGGRAPH},
  volume = {40}, 
  number = {8}, 
  year = {2021}, 
  url = {https://doi.org/10.1145/3450626.3459936} 
}

License

This code and model are available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using the code and model you agree to the terms of this license.

Acknowledgements

There are many people who deserve to get credited. These include but are not limited to: Yao Feng and Haiwen Feng and their original implementation of DECA. Antoine Toisoul and colleagues for EmoNet.

An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
duralava is a neural network which can simulate a lava lamp in an infinite loop.

duralava duralava is a neural network which can simulate a lava lamp in an infinite loop. Example This is not a real lava lamp but a "fake" one genera

Maximilian Bachl 87 Dec 20, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022