Official repository accompanying a CVPR 2022 paper EMOCA: Emotion Driven Monocular Face Capture And Animation. EMOCA takes a single image of a face as input and produces a 3D reconstruction. EMOCA sets the new standard on reconstructing highly emotional images in-the-wild

Overview

EMOCA: Emotion Driven Monocular Face Capture and Animation

Radek Daněček · Michael J. Black · Timo Bolkart

CVPR 2022

This repository is the official implementation of the CVPR 2022 paper EMOCA: Emotion-Driven Monocular Face Capture and Animation.

Top row: input images. Middle row: coarse shape reconstruction. Bottom row: reconstruction with detailed displacements.


PyTorch Lightning Project Page Youtube Video Paper PDF

EMOCA takes a single in-the-wild image as input and reconstructs a 3D face with sufficient facial expression detail to convey the emotional state of the input image. EMOCA advances the state-of-the-art monocular face reconstruction in-the-wild, putting emphasis on accurate capture of emotional content. The official project page is here.

EMOCA project

The training and testing script for EMOCA can be found in this subfolder:

EMOCA

Installation

Dependencies

  1. Install conda

  2. Install mamba

  1. Clone this repo

Short version

  1. Run the installation script:
bash install.sh

If this ran without any errors, you now have a functioning conda environment with all the necessary packages to run the demos. If you had issues with the installation script, go through the long version of the installation and see what went wrong. Certain packages (especially for CUDA, PyTorch and PyTorch3D) may cause issues for some users.

Long version

  1. Pull the relevant submodules using:
bash pull_submodules.sh
  1. Set up a conda environment with one of the provided conda files. I recommend using conda-environment_py36_cu11_ubuntu.yml.

You can use mamba to create a conda environment (strongly recommended):

mamba env create python=3.6 --file conda-environment_py36_cu11_ubuntu.yml

but you can also use plain conda if you want (but it will be slower):

conda env create python=3.6 --file conda-environment_py36_cu11_ubuntu.yml

Note: the environment might contain some packages. If you find an environment is missing then just conda/mamba- or pip- install it and please notify me.

  1. Activate the environment:
conda activate work36_cu11
  1. For some reason cython is glitching in the requirements file so install it separately:
pip install Cython==0.29.14
  1. Install gdl using pip install. I recommend using the -e option and I have not tested otherwise.
pip install -e .
  1. Verify that previous step correctly installed Pytorch3D

For some people the compilation fails during requirements install and works after. Try running the following separately:

pip install git+https://github.com/facebookresearch/[email protected]

Pytorch3D installation (which is part of the requirements file) can unfortunately be tricky and machine specific. EMOCA was developed with is Pytorch3D 0.6.0 and the previous command includes its installation from source (to ensure its compatibility with pytorch and CUDA). If it fails to compile, you can try to find another way to install Pytorch3D.

Note: EMOCA was developed with Pytorch 1.9.1 and Pytorch3d 0.6.0 running on CUDA toolkit 11.1.1 with cuDNN 8.0.5. If for some reason installation of these failed on your machine (which can happen), feel free to install these dependencies another way. The most important thing is that version of Pytorch and Pytorch3D match. The version of CUDA is probably less important.

Usage

  1. Activate the environment:
conda activate work36_cu11
  1. For running EMOCA examples, go to EMOCA

  2. For running examples of Emotion Recognition, go to EmotionRecognition

Structure

This repo has two subpackages. gdl and gdl_apps

GDL

gdl is a library full of research code. Some things are OK organized, some things are badly organized. It includes but is not limited to the following:

  • models is a module with (larger) deep learning modules (pytorch based)
  • layers contains individual deep learning layers
  • datasets contains base classes and their implementations for various datasets I had to use at some points. It's mostly image-based datasets with various forms of GT if any
  • utils - various tools

The repo is heavily based on PyTorch and Pytorch Lightning.

GDL_APPS

gdl_apps contains prototypes that use the GDL library. These can include scripts on how to train, evaluate, test and analyze models from gdl and/or data for various tasks.

Look for individual READMEs in each sub-projects.

Current projects:

Citation

If you use this work in your publication, please cite the following publications:

@inproceedings{EMOCA:CVPR:2022,
  title = {{EMOCA}: {E}motion Driven Monocular Face Capture and Animation},
  author = {Danecek, Radek and Black, Michael J. and Bolkart, Timo},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages = {},
  year = {2022}
}

As EMOCA builds on top of DECA and uses parts of DECA as fixed part of the model, please further cite:

@article{DECA:Siggraph2021,
  title={Learning an Animatable Detailed {3D} Face Model from In-The-Wild Images},
  author={Feng, Yao and Feng, Haiwen and Black, Michael J. and Bolkart, Timo},
  journal = {ACM Transactions on Graphics (ToG), Proc. SIGGRAPH},
  volume = {40}, 
  number = {8}, 
  year = {2021}, 
  url = {https://doi.org/10.1145/3450626.3459936} 
}

License

This code and model are available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using the code and model you agree to the terms of this license.

Acknowledgements

There are many people who deserve to get credited. These include but are not limited to: Yao Feng and Haiwen Feng and their original implementation of DECA. Antoine Toisoul and colleagues for EmoNet.

This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023