A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

Overview

faceswap-GAN

Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture.

Updates

Date    Update
2018-08-27     Colab support: A colab notebook for faceswap-GAN v2.2 is provided.
2018-07-25     Data preparation: Add a new notebook for video pre-processing in which MTCNN is used for face detection as well as face alignment.
2018-06-29     Model architecture: faceswap-GAN v2.2 now supports different output resolutions: 64x64, 128x128, and 256x256. Default RESOLUTION = 64 can be changed in the config cell of v2.2 notebook.
2018-06-25     New version: faceswap-GAN v2.2 has been released. The main improvements of v2.2 model are its capability of generating realistic and consistent eye movements (results are shown below, or Ctrl+F for eyes), as well as higher video quality with face alignment.
2018-06-06     Model architecture: Add a self-attention mechanism proposed in SAGAN into V2 GAN model. (Note: There is still no official code release for SAGAN, the implementation in this repo. could be wrong. We'll keep an eye on it.)

Google Colab support

Here is a playground notebook for faceswap-GAN v2.2 on Google Colab. Users can train their own model in the browser.

[Update 2019/10/04] There seems to be import errors in the latest Colab environment due to inconsistent version of packages. Please make sure that the Keras and TensorFlow follow the version number shown in the requirement section below.

Descriptions

faceswap-GAN v2.2

  • FaceSwap_GAN_v2.2_train_test.ipynb

    • Notebook for model training of faceswap-GAN model version 2.2.
    • This notebook also provides code for still image transformation at the bottom.
    • Require additional training images generated through prep_binary_masks.ipynb.
  • FaceSwap_GAN_v2.2_video_conversion.ipynb

    • Notebook for video conversion of faceswap-GAN model version 2.2.
    • Face alignment using 5-points landmarks is introduced to video conversion.
  • prep_binary_masks.ipynb

    • Notebook for training data preprocessing. Output binary masks are save in ./binary_masks/faceA_eyes and ./binary_masks/faceB_eyes folders.
    • Require face_alignment package. (An alternative method for generating binary masks (not requiring face_alignment and dlib packages) can be found in MTCNN_video_face_detection_alignment.ipynb.)
  • MTCNN_video_face_detection_alignment.ipynb

    • This notebook performs face detection/alignment on the input video.
    • Detected faces are saved in ./faces/raw_faces and ./faces/aligned_faces for non-aligned/aligned results respectively.
    • Crude eyes binary masks are also generated and saved in ./faces/binary_masks_eyes. These binary masks can serve as a suboptimal alternative to masks generated through prep_binary_masks.ipynb.

Usage

  1. Run MTCNN_video_face_detection_alignment.ipynb to extract faces from videos. Manually move/rename the aligned face images into ./faceA/ or ./faceB/ folders.
  2. Run prep_binary_masks.ipynb to generate binary masks of training images.
    • You can skip this pre-processing step by (1) setting use_bm_eyes=False in the config cell of the train_test notebook, or (2) use low-quality binary masks generated in step 1.
  3. Run FaceSwap_GAN_v2.2_train_test.ipynb to train models.
  4. Run FaceSwap_GAN_v2.2_video_conversion.ipynb to create videos using the trained models in step 3.

Miscellaneous

Training data format

  • Face images are supposed to be in ./faceA/ or ./faceB/ folder for each taeget respectively.
  • Images will be resized to 256x256 during training.

Generative adversarial networks for face swapping

1. Architecture

enc_arch3d

dec_arch3d

dis_arch3d

2. Results

  • Improved output quality: Adversarial loss improves reconstruction quality of generated images. trump_cage

  • Additional results: This image shows 160 random results generated by v2 GAN with self-attention mechanism (image format: source -> mask -> transformed).

  • Evaluations: Evaluations of the output quality on Trump/Cage dataset can be found here.

The Trump/Cage images are obtained from the reddit user deepfakes' project on pastebin.com.

3. Features

  • VGGFace perceptual loss: Perceptual loss improves direction of eyeballs to be more realistic and consistent with input face. It also smoothes out artifacts in the segmentation mask, resulting higher output quality.

  • Attention mask: Model predicts an attention mask that helps on handling occlusion, eliminating artifacts, and producing natrual skin tone.

  • Configurable input/output resolution (v2.2): The model supports 64x64, 128x128, and 256x256 outupt resolutions.

  • Face tracking/alignment using MTCNN and Kalman filter in video conversion:

    • MTCNN is introduced for more stable detections and reliable face alignment (FA).
    • Kalman filter smoothen the bounding box positions over frames and eliminate jitter on the swapped face. comp_FA
  • Eyes-aware training: Introduce high reconstruction loss and edge loss in eyes area, which guides the model to generate realistic eyes.

Frequently asked questions and troubleshooting

1. How does it work?

  • The following illustration shows a very high-level and abstract (but not exactly the same) flowchart of the denoising autoencoder algorithm. The objective functions look like this. flow_chart

2. Previews look good, but it does not transform to the output videos?

  • Model performs its full potential when the input images are preprocessed with face alignment methods.
    • readme_note001

Requirements

Acknowledgments

Code borrows from tjwei, eriklindernoren, fchollet, keras-contrib and reddit user deepfakes' project. The generative network is adopted from CycleGAN. Weights and scripts of MTCNN are from FaceNet. Illustrations are from irasutoya.

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022