PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Overview

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022)

Paper

ArXiv

Why it matters?

When data augmentation is applied on an input image, a model is forced to learn invariant features to improve model generalization (Figure 1).

Since data augmentation incurs little overhead, why not generate 2 data augmented images (also known as 2 positive samples) from a given input. Then, force the model to agree on the common invariant features to support the correct label (Figure 2). It turns out that maximizing this agreement further improves model model generalization. We call our method AgMax.

Unlike label smoothing, AgMax consistently improves model accuracy. For example on ImageNet1k for 90 epochs, the ResNet50 performance is as follows:

Data Augmentation Baseline Label Smoothing AgMax (Ours)
Standard 76.4 76.8 76.9
CutOut 76.2 76.5 77.1
MixUp 76.5 76.7 77.6
CutMix 76.3 76.4 77.4
AutoAugment (AA) 76.2 76.2 77.1
CutOut+AA 75.7 75.7 76.6
MixUp+AA 75.9 76.5 77.1
CutMix+AA 75.5 75.5 77.0

The figure below demonstrates consistent improvement across different data augmnentation methods:

Install requirements

pip3 install -r requirements.txt

Train

For example, train ResNet50 with AgMax on 2 GPUs for 90 epochs, SGD with lr=0.1 and multistep learning rate scheduler:

CUDA_VISIBLE_DEVICES=0,1 python3 main.py --config=ResNet50-standard-agmax --train \
--multisteplr --dataset=imagenet --epochs=90 --save

Compare the results without AgMax:

CUDA_VISIBLE_DEVICES=0,1 python3 main.py --config=ResNet50-standard --train \
--multisteplr --dataset=imagenet --epochs=90 --save

Test

Using a pre-trained model:

ResNet101 trained with CutMix, AutoAugment and AgMax:

mkdir checkpoints
cd checkpoints
wget https://github.com/roatienza/agmax/releases/download/agmax-0.1.0/imagenet-agmax-mi-ResNet101-cutmix-auto_augment-81.19-mlp-4096.pth
cd ..
python3 main.py --config=ResNet101-auto_augment-cutmix-agmax --eval \
--dataset=imagenet \
--resume imagenet-agmax-mi-ResNet101-cutmix-auto_augment-81.19-mlp-4096.pth

ResNet50 trained with CutMix, AutoAugment and AgMax:

python3 main.py --config=ResNet50-auto_augment-cutmix-agmax --eval --n-units=2048 \
--dataset=imagenet --resume imagenet-agmax-ResNet50-cutmix-auto_augment-79.12-mlp-2048.pth

Other pre-trained models (Baselines):

Citation

If you find this work useful, please cite:

@inproceedings{atienza2022agmax,
  title={Improving Model Generalization by Agreement of Learned Representations from Data Augmentation},
  author={Atienza, Rowel},
  booktitle = {IEEE/CVF Winter Conference on Applications of Computer Vision},
  year={2022},
  pubstate={published},
  tppubtype={inproceedings}
}
You might also like...
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Sharpness-Aware Minimization for Efficiently Improving Generalization
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Code for
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Comments
  • Question about the mutual information in the agmax loss

    Question about the mutual information in the agmax loss

    The agmax loss is computed by "agreement_loss, dl = agmax_loss(y, target, self.args.dl_weight)" , I do not know what does the argeement_loss and dl mean, and do not know the relationship between these two loss and the calculation of mutual information. Could you give me some help?

    opened by YananGu 4
Owner
Rowel Atienza
Rowel Atienza
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022