This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Overview

Gait3D-Benchmark

This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)". The official project page is here.

What's New

  • [Mar 2022] Another gait in the wild dataset GREW is supported.
  • [Mar 2022] Our Gait3D dataset and SMPLGait method are released.

Model Zoo

Gait3D

Input Size: 128x88(64x44)

Method [email protected] [email protected] mAP mINP download
GaitSet(AAAI2019)) 42.60(36.70) 63.10(58.30) 33.69(30.01) 19.69(17.30) model-128(model-64)
GaitPart(CVPR2020) 29.90(28.20) 50.60(47.60) 23.34(21.58) 13.15(12.36) model-128(model-64)
GLN(ECCV2020) 42.20(31.40) 64.50(52.90) 33.14(24.74) 19.56(13.58) model-128(model-64)
GaitGL(ICCV2021) 23.50(29.70) 38.50(48.50) 16.40(22.29) 9.20(13.26) model-128(model-64)
OpenGait Baseline* 47.70(42.90) 67.20(63.90) 37.62(35.19) 22.24(20.83) model-128(model-64)
SMPLGait(CVPR2022) 53.20(46.30) 71.00(64.50) 42.43(37.16) 25.97(22.23) model-128(model-64)

*It should be noticed that OpenGait Baseline is equal to SMPLGait w/o 3D in our paper.

Cross Domain

Datasets in the Wild (GaitSet, 64x44)

Source Target [email protected] [email protected] mAP
GREW (official split) Gait3D 15.80 30.20 11.83
GREW (our split) 16.50 31.10 11.71
Gait3D GREW (official split) 18.81 32.25 ~
GREW (our split) 43.86 60.89 28.06

Requirements

  • pytorch >= 1.6
  • torchvision
  • pyyaml
  • tensorboard
  • opencv-python
  • tqdm
  • py7zr
  • tabulate
  • termcolor

Installation

You can replace the second command from the bottom to install pytorch based on your CUDA version.

git clone https://github.com/Gait3D/Gait3D-Benchmark.git
cd Gait3D-Benchmark
conda create --name py37torch160 python=3.7
conda activate py37torch160
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install tqdm pyyaml tensorboard opencv-python tqdm py7zr tabulate termcolor

Data Preparation

Please download the Gait3D dataset by signing an agreement. We ask for your information only to make sure the dataset is used for non-commercial purposes. We will not give it to any third party or publish it publicly anywhere.

Data Pretreatment

Run the following command to preprocess the Gait3D dataset.

python misc/pretreatment.py --input_path 'Gait3D/2D_Silhouettes' --output_path 'Gait3D-sils-64-44-pkl' --img_h 64 --img_w 44
python misc/pretreatment.py --input_path 'Gait3D/2D_Silhouettes' --output_path 'Gait3D-sils-128-88-pkl' --img_h 128 --img_w 88
python misc/pretreatment_smpl.py --input_path 'Gait3D/3D_SMPLs' --output_path 'Gait3D-smpls-pkl'

Data Structrue

After the pretreatment, the data structure under the directory should like this

├── Gait3D-sils-64-44-pkl
│  ├── 0000
│     ├── camid0_videoid2
│        ├── seq0
│           └──seq0.pkl
├── Gait3D-sils-128-88-pkl
│  ├── 0000
│     ├── camid0_videoid2
│        ├── seq0
│           └──seq0.pkl
├── Gait3D-smpls-pkl
│  ├── 0000
│     ├── camid0_videoid2
│        ├── seq0
│           └──seq0.pkl

Train

Run the following command:

sh train.sh

Test

Run the following command:

sh test.sh

Citation

Please cite this paper in your publications if it helps your research:

@inproceedings{zheng2022gait3d,
  title={Gait Recognition in the Wild with Dense 3D Representations and A Benchmark},
  author={Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Acknowledgement

Here are some great resources we benefit:

  • The codebase is based on OpenGait.
  • The 3D SMPL data is obtained by ROMP.
  • The 2D Silhouette data is obtained by HRNet-segmentation.
  • The 2D pose data is obtained by HRNet.
  • The ReID featrue used to make Gait3D is obtained by FastReID.
Comments
  • lib/modeling/models/smplgait.py throwing error when training a new dataset

    lib/modeling/models/smplgait.py throwing error when training a new dataset

    Hi Jinkai,

    When I try to use the SMPLGait to apply on other dataset, during the training process, the smplgait.py throws the error that: smpls = ipts[1][0] # [n, s, d] IndexError: list index out of range It is also interesting that I used 4 GPUs in the training. 3 of them could detect the the ipts[1][0] tensor with size 1. However, the fourth one failed to do so. Could I know how I can solve this?

    opened by zhiyuann 7
  • I have a few questions about Gait3D-Benchmark Datasets

    I have a few questions about Gait3D-Benchmark Datasets

    Hi. Im jjun. I read your paper impressively.

    We don't currently live in China, so it is difficult to use dataset on baidu disk.

    If you don't mind, is there a way to download the dataset to another disk (e.g Google drive)?

    opened by jjunnii 6
  • Question about 3D SMPL skeleton topology diagram

    Question about 3D SMPL skeleton topology diagram

    Your work promotes the application of gait recognition in real scenes, can you provide the topology diagram of the SMPL 3D skeleton in Gait3D? Because the specific meaning of the 24 joint points is not stated in your data description document.

    opened by HL-HYX 4
  • ROMP SMPL transfer

    ROMP SMPL transfer

    When I try to use the ROMP to generate out the 3D mesh, I detect there is a version conflict with the ROMP used by SMPLGait. Could I know which version of the ROMP the SMPLGait used? In this way I could use the SMPLGait to run on other ReID dataset.

    opened by zhiyuann 3
  • question about iteration and epoch

    question about iteration and epoch

    Hi! The total iteration in your code is set to 180000, and you report the total epoch as 1200 in your paper. What's the relationship between iteration and epoch?

    opened by yan811 2
  • About data generation

    About data generation

    Hi! I 'd like to know some details about data generation in NPZ files.

    In npz file: 1 What's the order of "pose"? SMPL pose parameter should be [24,3] dim, how did you convert it to [72,]? The order is [keypoint1_angel1, keypoint1_angle2, keypoint1_angle3, keypoint2_angel1, keypoint2_angle2, keypoint2_angle3...] or [keypoint1_angle1, keypoint2_angle1... keypoint1_angle2, keypoint2_angle2... keypoint1_angle3, keypoint1_angle3... ] ?

    2 How did you generate pose into SMPL format,SPIN format , and OpenPose format? What's the order of the second dim? Is the keypoint order the same with SMPL model?

    3 In pkl file: For example, dim of data in './0000/camid0_videoid2/seq0/seq0.pkl' is [48,85]. What's the order of dim 1? Is it ordered by time order or shuffled?

    opened by yan811 2
  • GREW pretreatment `to_pickle` has size 0

    GREW pretreatment `to_pickle` has size 0

    I'm trying to run GREW pretreatment code but it generates no GREW-pkl folder at the end of the process. I debugged myself and checked if the --dataset flag is set properly and the to_pickle list size before saving the pickle file. The flag is well set but the size of the list is always 0.

    I downloaded the GREW dataset from the link you guys sent me and made de GREW-rearranged folder using the code provided. I'll keep investigating what is causing such an error and if I find I'll set a fixing PR.

    opened by gosiqueira 1
  • About the pose data

    About the pose data

    Can you make a detailed description of the pose data? This is the path of one frame pose and the corresponding content of the txt file Gait3D/2D_Poses/0000/camid9_videoid2/seq0/human_crop_f17279.txt '311,438,89.201164,62.87694,0.57074964,89.201164,54.322254,0.47146344,84.92382,62.87694,0.63443935,42.150383....' I have 3 questions. Q1: what does 'f17279' means? Q2: what does the first number (e.g. 311) in the txt file mean? Q3: which number('f17279' or '311') should I regard as a base when I order the sequence? Thank you very much!

    opened by HiAleeYang 0
Owner
Official repo for Gait3D dataset
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022