BBScan py3 - BBScan py3 With Python

Overview

BBScan_py3

This repository is forked from lijiejie/BBScan 1.5. I migrated the former python code to python3. The following description is the origin author's readme.

BBScan 是一个高并发漏洞扫描工具,可用于

  • 高危漏洞爆发后,编写简单插件或规则,进行全网扫描
  • 作为巡检组件,集成到已有漏洞扫描系统中

BBScan能够在1分钟内

  • 对超过2万个IP地址进行指定端口发现,同时,进行漏洞验证。例如,Samba MS17010漏洞
  • 对超过1000个网站进行HTTP服务发现(80/443),同时,请求某个指定URL,完成漏洞检测

BBScan is a super fast vulnerability scanner.

  • A class B network (65534 hosts) could be scanned within 4 minutes (ex. Detect Samba MS17010)
  • Up to find more than 1000 target's web services and meanwhile, detect the vulnerability associated with a specified URL within one minute

Install

pip3 install -r requirements.txt

开始使用

  • 使用1个或多个插件,扫描某个B段
python BBScan.py --scripts-only --script redis_unauthorized_access --host www.site.com --network 16

上述命令将使用 redis_unauthorized_access 插件,扫描 www.site.com/16,扫描过程将持续 2~4 分钟。

  • 使用1个或多个规则,扫描文件中的所有目标
python BBScan.py --no-scripts --rule git_and_svn --no-check404 --no-crawl -f iqiyi.txt

使用 git_and_svn 文件中的规则,扫描 iqiyi.txt 文件中的所有目标,每一行一个目标

--no-check404 指定不检查404状态码

--no-crawl 指定不抓取子目录

通过指定上述两个参数,可显著减少HTTP请求的数量。

参数说明

如何设定扫描目标

  --host [HOST [HOST ...]]
                        该参数可指定1个或多个域名/IP
  -f TargetFile         从文件中导入所有目标,目标以换行符分隔
  -d TargetDirectory    从文件夹导入所有.txt文件,文件中是换行符分隔的目标
  --network MASK        设置一个子网掩码(8 ~ 31),配合上面3个参数中任意一个。将扫描
  						Target/MASK 网络下面的所有IP

HTTP扫描

  --rule [RuleFileName [RuleFileName ...]]
                        扫描指定的1个或多个规则
  -n, --no-crawl        禁用页面抓取,不处理页面中的其他链接
  -nn, --no-check404    禁用404状态码检查
  --full                处理所有子目录。 /x/y/z/这样的链接,/x/ /x/y/也将被扫描

插件扫描

  --scripts-only        只启用插件扫描,禁用HTTP规则扫描
  --script [ScriptName [ScriptName ...]]
                        扫描指定1个或多个插件
  --no-scripts          禁用插件扫描

并发

  -p PROCESS            扫描进程数,默认30。建议设置 10 ~ 50之间
  -t THREADS            单个目标的扫描线程数, 默认3。建议设置 3 ~ 10之间

其他参数

  --timeout TIMEOUT     单个目标最大扫描时间(单位:分钟),默认10分钟
  -md                   输出markdown格式报告
  --save-ports PortsDataFile
                        将端口开放信息保存到文件 PortsDataFile,可以导入再次使用
  --debug               打印调试信息
  -nnn, --no-browser    不使用默认浏览器打开扫描报告
  -v                    show program's version number and exit

使用技巧

  • 如何把BBScan当做一个快速的端口扫描工具使用?

找到scripts/tools/port_scan.py,填入需要扫描的端口号列表。把文件移动到scripts下。执行

python BBScan.py --scripts-only --script port_scan --host www.baidu.com --network 16 --save-ports ports_80.txt

--save-ports 是一个非常有用的参数,可以将每次任务执行过程发现的端口,保存到文件中

  • 如何观察执行过程

请设置 --debug 参数,观察是否按照预期,执行插件,发起HTTP请求

  • 如何编写插件

请参考scripts文件夹下的插件内容。self参数是一个Scanner对象,可使用Scanner对象的任意方法、属性。

self.host self.port 是目标主机和端口

self.ports_open 是开放的端口列表,是所有插件共享的。 一般不在插件执行过程中再单独扫描端口

self.conn_pool 是HTTP连接池

self.http_request 可发起HTTP GET请求

self.index_headers self.index_status self.index_html_doc 是请求首页后返回的,一旦扫描器发现有插件依赖,会预先请求首页,保存下来,被所有插件公用

Owner
baiyunfei
我是一个执着的人,坚持做着自己热爱的事情!
baiyunfei
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022