Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

Overview


This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers more flexibility when using our training scripts, while also making it easier to adapt our code contributions into other projects.

Why DinkyTrain?

The Dinky runs between Princeton Junction and Princeton and is the shortest scheduled commuter rail line in the United States. We also aim to make pre-training short and accessible to everyone.

Our Contributions

  • DeepSpeed transformer kernel integration
  • A training recipe for efficient MLM pre-training
  • An easy-to-follow guideline of using fairseq for MLM pre-training.

Other fairseq features:

See the fairseq repo and its documentation for more details on how to use and extend fairseq.

DinkyTrain for Efficient MLM Pre-training

Quick Links

Overview

You can reproduce the pre-training experiments of our recent paper Should You Mask 15% in Masked Language Modeling?, where we find that higher masking rates can lead to more efficient pre-training.

Installation

  • PyTorch version >= 1.5.0
  • Python version >= 3.6
  • To install fairseq and develop locally:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
  • For faster training (FP16) install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For faster training (DeepSpeed cuda kernel) install DeepSpeed library and compile the DeepSpeed kernel
DS_BUILD_TRANSFORMER=1 DS_BUILD_STOCHASTIC_TRANSFORMER=1 pip install deepspeed
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run .

Trouble-shooting:

  • If using lower version of Python, you might encounter import problems with importlib.metadata. Try pip install importlib-metadata.
  • To install apex and deepspeed, you will need nvcc (CUDA compiler).
  • When installing apex, if you encounter the error Cuda extensions are bing compiled with a version of Cuda that does not match ..., go to setup.py and comment out the line that raised the error (at your own risk).
  • Both apex and deepspeed installation require a high gcc version to support c++14. If you encounter relevant errors, update your gcc.

Data Pre-processing

Tokenization: First, download the GPT2 BPE vocabulary:

wget -O gpt2_bpe/encoder.json https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
wget -O gpt2_bpe/vocab.bpe https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe

Then, tokenize your raw data:

python -m examples.roberta.multiprocessing_bpe_encoder \
    --encoder-json gpt2_bpe/encoder.json \
    --vocab-bpe gpt2_bpe/vocab.bpe \
    --inputs ${SPLIT}.raw \
    --outputs ${SPLIT}.bpe \
    --keep-empty \
    --workers 8

Finally, index and binarize your data:

fairseq-preprocess \
    --only-source \
    --srcdict gpt2_bpe/dict.txt \
    --trainpref ${TRAIN_SPLIT}.bpe \
    --validpref ${VALID_SPLIT}.bpe \
    --testpref ${TEST_SPLIT}.bpe \
    --destdir output-bin \
    --workers 8

Alternatively: Use our pre-processed data: We preprocessed Wikipedia+BookCorpus and shared it on Huggingface dataset. It is ~22GB and contains two epochs of data, each epoch being sliced into 8 shards. You can download it using git:

git lfs install # Git lfs is needed for downloading
git clone https://huggingface.co/datasets/princeton-nlp/wikibook_fairseq_format

Pre-training

Use our script for efficient pre-training

GPU={number of GPUs} DATA_DIR={data path} [DEEPSPEED=1] bash run_efficient_mlm_recipe.sh

Flags explained

  • GPU: number of GPUs.
  • DATA_DIR: directory to the processed pre-training data. If you are using our preprocessed dataset, DATA_DIR should be:
DATA_DIR=$(seq 0 15 | sed -e 's/^/wikibook_fairseq_format\/bin-shard/' | sed -e 's/$/-8/' | paste -sd ':')
  • DEEPSPEED (optional): if set to 1, the DeepSpeed CUDA kernel will be used.

Please refer to the script for more hyperparameter choices.

Fine-tuning on GLUE and SQuAD

All our checkpoints can be converted to HuggingFace transformers models (see next nextion) and use the transformers package for fine-tuning. Fairseq also supports fine-tuning on GLUE.

First, download the preprocessed GLUE data (you can also process by yourself following the preprocess section above):

git lfs install # Git lfs is needed for downloading
git clone https://huggingface.co/datasets/princeton-nlp/glue_fairseq_format

Then use the following script for fine-tuning

DATA_DIR={path to the data directory} \
TASK={glue task name (mnli qnli qqp rte sst2 mrpc cola stsb)} \
LR={learning rate} \
BSZ={batch size} \
EPOCHS={number of epochs} \
SEED={random seed} \
CKPT_DIR={checkpoint's directory} \
CKPT_NAME={checkpoint's name} \
[DEEPSPEED=1] bash finetune_glue.sh

For fine-tuning on SQuAD, please convert the models to HuggingFace checkpoints following the next section and use HuggingFace's examples.

Convert to HuggingFace

We also provide conversion codes so that you can easily turn Fairseq checkpoints into HuggingFace checkpoints. Usage:

cd scripts
[PRELAYERNORM=1] [FROM_DS=1] python convert_fs_ckpt_to_hf_ckpt.py --fr {fairseq checkpoint} --to {huggingface checkpoint path} --hf_model_config {roberta-base/roberta-large}

Flags explained:

  • PRELAYERNORM=1: Using pre layer-norm (default is post layer-norm).
  • FROM_DS=1: The Fairseq checkpoint uses DeepSpeed's cuda kernel.
  • --fr: The path to the Fairseq checkpoint.
  • --to: The path you want to save the HuggingFace checkpoint to.
  • --hf_model_config: roberta-base or roberta-large.

IMPORTANT: all our models use pre layer norm, which is not supported by HuggingFace yet. To use it, import the model class from huggingface/modeling_roberta_prelayernorm.py. For example:

from huggingface.modeling_roberta_prelayernorm import RobertaForSequenceClassification

For more configuration, please refer to convert_fs_ckpt_to_hf_ckpt.py.

Model List

Here are the HuggingFace checkpoints of our models in the paper Should You Mask 15% in Masked Language Modeling. Results are development set performance.

Model MNLI QNLI QQP SST-2
princeton-nlp/efficient_mlm_m0.15 84.2 90.9 87.8 93.3
princeton-nlp/efficient_mlm_m0.20 84.1 91.3 87.9 92.7
princeton-nlp/efficient_mlm_m0.30 84.2 91.6 88.0 93.0
princeton-nlp/efficient_mlm_m0.40 84.5 91.6 88.1 92.8
princeton-nlp/efficient_mlm_m0.50 84.1 91.1 88.1 92.7
princeton-nlp/efficient_mlm_m0.60 83.2 90.7 87.8 92.6
princeton-nlp/efficient_mlm_m0.70 82.3 89.4 87.5 91.9
princeton-nlp/efficient_mlm_m0.80 80.8 87.9 87.1 90.5
princeton-nlp/efficient_mlm_m0.15-801010 83.7 90.4 87.8 93.2
princeton-nlp/efficient_mlm_m0.40-801010 84.3 91.2 87.9 93.0

We also offer the original (deepspeed) fairseq checkpoints here.

Bugs or Questions?

If you hav an questions, or encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@article{wettig2022should,
   title={Should You Mask 15% in Masked Language Modeling?},
   author={Wettig, Alexander and Gao, Tianyu and Zhong, Zexuan and Chen, Danqi},
   boo={arXiv preprint arXiv:2202.08005},
   year={2022}
}

Acknowledgment

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 48–53.

  • Our efficient training recipe is based on the following paper:

Peter Izsak, Moshe Berchansky, and Omer Levy. 2021. How to train BERT with an academic budget. In Empirical Methods in Natural Language Processing (EMNLP), pages 10644–10652.

Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
Natural Language Processing Tasks and Examples.

Natural Language Processing Tasks and Examples With the advancement of A.I. technology in recent years, natural language processing technology has bee

Soohwan Kim 53 Dec 20, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
中文問句產生器;使用台達電閱讀理解資料集(DRCD)

Transformer QG on DRCD The inputs of the model refers to we integrate C and A into a new C' in the following form. C' = [c1, c2, ..., [HL], a1, ..., a

Philip 1 Oct 22, 2021
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023