A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

Overview

简体中文 | English

并行语音合成

[TOC]

新进展

目录结构

.
|--- config/      # 配置文件
     |--- default.yaml
     |--- ...
|--- datasets/    # 数据处理
|--- encoder/     # 声纹编码器
     |--- voice_encoder.py
     |--- ...
|--- helpers/     # 一些辅助类
     |--- trainer.py
     |--- synthesizer.py
     |--- ...
|--- logdir/      # 训练过程保存目录
|--- losses/      # 一些损失函数
|--- models/      # 合成模型
     |--- layers.py
     |--- duration.py
     |--- parallel.py
|--- pretrained/  # 预训练模型(LJSpeech 数据集)
|--- samples/     # 合成样例
|--- utils/       # 一些通用方法
|--- vocoder/     # 声码器
     |--- melgan.py
     |--- ...
|--- wandb/       # Wandb 保存目录
|--- extract-duration.py
|--- extract-embedding.py
|--- LICENSE
|--- prepare-dataset.py  # 准备脚本
|--- README.md
|--- README_en.md
|--- requirements.txt    # 依赖文件
|--- synthesize.py       # 合成脚本
|--- train-duration.py   # 训练脚本
|--- train-parallel.py

合成样例

部分合成样例见这里

预训练

部分预训练模型见这里

快速开始

步骤(1):克隆仓库

$ git clone https://github.com/atomicoo/ParallelTTS.git

步骤(2):安装依赖

$ conda create -n ParallelTTS python=3.7.9
$ conda activate ParallelTTS
$ pip install -r requirements.txt

步骤(3):合成语音

$ python synthesize.py \
  --checkpoint ./pretrained/ljspeech-parallel-epoch0100.pth \
  --melgan_checkpoint ./pretrained/ljspeech-melgan-epoch3200.pth \
  --input_texts ./samples/english/synthesize.txt \
  --outputs_dir ./outputs/

如果要合成其他语种的语音,需要通过 --config 指定相应的配置文件。

如何训练

步骤(1):准备数据

$ python prepare-dataset.py

通过 --config 可以指定配置文件,默认的 default.yaml 针对 LJSpeech 数据集。

步骤(2):训练对齐模型

$ python train-duration.py

步骤(3):提取持续时间

$ python extract-duration.py

通过 --ground_truth 可以指定是否利用对齐模型生成 Ground-Truth 声谱图。

步骤(4):训练合成模型

$ python train-parallel.py

通过 --ground_truth 可以指定是否使用 Ground-Truth 声谱图进行模型训练。

训练日志

如果使用 TensorBoardX,则运行如下命令:

$ tensorboard --logdir logdir/[DIR]/

强烈推荐使用 Wandb(Weights & Biases),只需在上述训练命令中增加 --enable_wandb 选项。

数据集

  • LJSpeech:英语,女性,22050 Hz,约 24 小时
  • LibriSpeech:英语,多说话人(仅使用 train-clean-100 部分),16000 Hz,总计约 1000 小时
  • JSUT:日语,女性,48000 Hz,约 10 小时
  • BiaoBei:普通话,女性,48000 Hz,约 12 小时
  • KSS:韩语,女性,44100 Hz,约 12 小时
  • RuLS:俄语,多说话人(仅使用单一说话人音频),16000 Hz,总计约 98 小时
  • TWLSpeech(非公开,质量较差):藏语,女性(多说话人,音色相近),16000 Hz,约 23 小时

质量评估

TODO:待补充

速度指标

训练速度:对于 LJSpeech 数据集,设置批次尺寸为 64,可以在单张 8GB 显存的 GTX 1080 显卡上进行训练,训练 ~8h(~300 epochs)后即可合成质量较高的语音。

合成速度:以下测试在 CPU @ Intel Core i7-8550U / GPU @ NVIDIA GeForce MX150 下进行,每段合成音频在 8 秒左右(约 20 词)

批次尺寸 Spec
(GPU)
Audio
(GPU)
Spec
(CPU)
Audio
(CPU)
1 0.042 0.218 0.100 2.004
2 0.046 0.453 0.209 3.922
4 0.053 0.863 0.407 7.897
8 0.062 2.386 0.878 14.599

注意,没有进行多次测试取平均值,结果仅供参考。

一些问题

  • wavegan 分支中,vocoder 代码取自 ParallelWaveGAN,由于声学特征提取方式不兼容,需要进行转化,具体转化代码见这里
  • 普通话模型的文本输入选择拼音序列,因为 BiaoBei 的原始拼音序列不包含标点、以及对齐模型训练不完全,所以合成语音的节奏会有点问题。
  • 韩语模型没有专门训练对应的声码器,而是直接使用 LJSpeech(同为 22050 Hz)的声码器,可能稍微影响合成语音的质量。

参考资料

TODO

  • 合成语音质量评估(MOS)
  • 更多不同语种的测试
  • 语音风格迁移(音色)

欢迎交流

  • 微信号:Joee1995

  • 企鹅号:793071559

Owner
Atomicoo
Atomicoo
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022
NeMo: a toolkit for conversational AI

NVIDIA NeMo Introduction NeMo is a toolkit for creating Conversational AI applications. NeMo product page. Introductory video. The toolkit comes with

NVIDIA Corporation 5.3k Jan 04, 2023
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Linking data between GBIF, Biodiverse, and Open Tree of Life

GBIF-biodiverse-OpenTree Linking data between GBIF, Biodiverse, and Open Tree of Life The python scripts will rely on opentree and Dendropy. To set up

2 Oct 03, 2022
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

BADER ALABDAN 2 Oct 22, 2022
Transformers Wav2Vec2 + Parlance's CTCDecodeTransformers Wav2Vec2 + Parlance's CTCDecode

🤗 Transformers Wav2Vec2 + Parlance's CTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with Parlance's ctcdecode

Patrick von Platen 9 Jul 21, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
Pipelines de datos, 2021.

Este repo ilustra un proceso sencillo de automatización de transformación y modelado de datos, a través de un pipeline utilizando Luigi. Stack princip

Rodolfo Ferro 8 May 19, 2022
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022