The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Overview

Fake News Detection

Overview

The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news. However, it is difficult to understand how deep learning models make decisions on what is fake or real news, and furthermore these models are vulnerable to adversarial attacks. In this project, we test the resilience of a fake news detector against a set of adversarial attacks. Our results indicate that a deep learning model remains vulnerable to adversarial attacks, but also is alarmingly vulnerable to the use of generic attacks: the inclusion of certain sequences of text whose inclusion into nearly any text sample can cause it to be misclassified. We explore how this set of generic attacks against text classifiers can be detected, and explore how future models can be made more resilient against these attacks.

Dataset Description

Our fake news model and dataset are taken from this github repo.

  • train.csv: A full training dataset with the following attributes:

    • id: unique id for a news article
    • title: the title of a news article
    • author: author of the news article
    • text: the text of the article; could be incomplete
    • label: a label that marks the article as potentially unreliable
      • 1: unreliable
      • 0: reliable
  • test.csv: A testing training dataset with all the same attributes at train.csv without the label.

Adversarial Text Generation

It's difficult to generate adversarial samples when working with text, which is discrete. A workaround, proposed by J. Gao et al. has been to create small text perturbations, like misspelled words, to create a black-box attack on text classification models. Another method taken by N. Papernot has been to find the gradient based off of the word embeddings of sample text. Our approach uses the algorithm proposed by Papernot to generate our adversarial samples. While Gao’s method is extremely effective, with little to no modification of the meaning of the text samples, we decided to see if we could create valid adversarial samples by changing the content of the words, instead of their text.

Methodology

Our original goal was to create a model that could mutate text samples so that they would be misclassified by the model. We accomplished this by implementing the algorithm set out by Papernot in Crafting Adversarial Input Sequences. The proposed algorithm generates a white-box adversarial example based on the model’s Jacobian matrix. Random words from the original text sample are mutated. These mutations are determined by finding a word in the embedding where the sign of the difference between the original word and the new word are closest to the sign of the Jacobian of the original word. The resulting words have an embedding direction that most closely resemble the direction indicated as being most impactful according to the model’s Jacobian.

A fake news text sample modified to be classified as reliable is shown below:

Council of Elders Intended to Set Up Anti-ISIS Coalition by Jason Ditz, October said 31, 2016 Share This ISIS has killed a number of Afghan tribal elders and wounded several more in Nangarhar Province’s main city of Jalalabad today, with a suicide bomber from the group targeting a meeting of the council of elders in the city. The details are still scant, but ISIS claims that the council was established in part to discuss the formation of a tribal anti-ISIS coalition in the area. They claimed 15 killed and 25 wounded, labeling the victims “apostates.” Afghan 000 government officials put the toll a lot lower, saying only four were killed and seven mr wounded in the attack. Nangarhar is the main base of operations for ISIS forces in Afghanistan, though they’ve recently begun to pop up around several other provinces. Whether the council was at the point of establishing an anti-ISIS coalition or not, this is in keeping with the group mr's reaction to any sign of growing local resistance, with ISIS having similarly made an example of tribal groups in Iraq and Syria during their establishment there. Last 5 posts by Jason Ditz

We also discovered a phenomena where adding certain sequences of text to samples would cause them to be misclassified without needing to make any additional modifications to the original text. To discover additional sequences, we took three different approaches: generating sequences based on the sentiments of the word bank, using Papernot’s algorithm to append new sequences, and creating sequences by hand.

Modified Papernot

Papernot’s original algorithm had been trained to mutate existing words in an input text to generate the adversarial text. However, our LSTM model pads the input, leaving spaces for blank words when the input length is small enough. We modify Papernot’s algorithm to mutate on two “blank” words at the end of our input sequence. This will generate new sequences of text that can then be applied to other samples, to see if they can serve as generic attacks.

The modified Papernot algorithm generated two-word sequences of the words ‘000’, ‘said’, and ‘mr’ in various orders, closely resembling the word substitutions created by the baseline Papernot algorithm. It can be expected that the modified Papernot will still use words identified by the baseline method, given that both models rely on the model’s Jacobian matrix when selecting replacement words. When tested against all unreliable samples, sequences generated are able to shift the model’s confidence to inaccurately classify a majority of samples as reliable instead.

Handcraft

Our simplest approach to the generation was to manually look for sequences of text by hand. This involved looking at how the model had performed on the training set, how confident it was on certain samples, and looking for patterns in samples that had been misclassified. We tried to rely on patterns that appear to a human observer to be innocuous, but also explored other patterns that would change the meaning of the text in significant ways.

Methodology Sample Sequence False Discovery Rate
Papernot mr 000 0.37%
Papernot said mr 29.74%
Handcraft follow twitter 26.87%
Handcraft nytimes com 1.70%

Conclusion

One major issue with the deployment of deep learning models is that "the ease with which we can switch between any two decisions in targeted attacks is still far from being understood." It is primarily on this basis that we are skeptical of machine learning methods. We believe that there should be greater emphasis placed on identifying the set of misclassified text samples when evaluating the performance of fake news detectors. If seemingly minute perturbations in the text can change the entire classification of the sample, it is likely that these weaknesses will be found by fake news distributors, where the cost of producing fake news is cheaper than the cost of detecting it.

Our project also led to the discovery of the existence of a set of sequences that could be applied to nearly any text sample to then be misclassified by the model, resembling generic attacks from the cryptography field. We proposed a modification of Papernot’s Jacobian-based adversarial attack to automatically identify these sequences. However, some of these generated sequences do not feel natural to the human eye, and future work can be placed into improving their generation. For now, while the eyes of a machine may be tricked by our samples, the eyes of a human can still spot the differences.

References

Owner
Kushal Shingote
Android Developer📱📱 iOS Apps📱📱 Swift | Xcode | SwiftUI iOS Swift development📱 Kotlin Application📱📱 iOS📱 Artificial Intelligence 💻 Data science
Kushal Shingote
The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank

Main Idea The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank Semantic Search Re

Sergio Arnaud Gomez 2 Jan 28, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Findings of ACL 2021

Assessing Dialogue Systems with Distribution Distances [arXiv][code] We propose to measure the performance of a dialogue system by computing the distr

Yahui Liu 16 Feb 24, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022
[EMNLP 2021] LM-Critic: Language Models for Unsupervised Grammatical Error Correction

LM-Critic: Language Models for Unsupervised Grammatical Error Correction This repo provides the source code & data of our paper: LM-Critic: Language M

Michihiro Yasunaga 98 Nov 24, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Few-shot Natural Language Generation for Task-Oriented Dialog

Few-shot Natural Language Generation for Task-Oriented Dialog This repository contains the dataset, source code and trained model for the following pa

172 Dec 13, 2022
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。

OlittleRer 运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。编程语言和工具包括Java、Python、Matlab、CPLEX、Gurobi、SCIP 等。 关注我们: 运筹小公众号 有问题可以直接在

运小筹 151 Dec 30, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022