NLP tool to extract emotional phrase from tweets 🤩

Overview

Emotional phrase extractor

Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in these times where decisions and reactions are created and updated in seconds. But, which words actually lead to the sentiment description? This project aims to solve this problem.

Powered using Pytorch + hugggingface 🤗

Try it out.

git clone https://github.com/shahules786/twitter-emotions.git

cd twitter-emotions

sudo docker build --tag twitter-emotions:api .

sudo docker run -p 9999:9999  -it twitter-emotions:api python twitteremotions/app.py

Server will start running on port 9999 of localhost

Example

Installation for development

git clone https://github.com/shahules786/twitter-emotions.git

cd twitter-emotions

pip install -r requirements.txt

Train Model on your data

from twitteremotions.emotions import TwitterEmotions
emotions = TwitterEmotions()
emotions.train(train_path="data/train.csv", epochs=10, batch_size=32, max_len=168, test_size=0.25)

Contributing

All contrbutions are welcome 👋

You might also like...
 HuggingTweets - Train a model to generate tweets
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

The tool to make NLP datasets ready to use
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

Snips Python library to extract meaning from text
Snips Python library to extract meaning from text

Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur

Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Extract Keywords from sentence or Replace keywords in sentences.
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Snips Python library to extract meaning from text
Snips Python library to extract meaning from text

Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur

Textpipe: clean and extract metadata from text
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Comments
  • avoid confusion : end_tokens instead of start_tokens

    avoid confusion : end_tokens instead of start_tokens

    Avoid Confusion

    Replace start_tokens with end_tokens for the fourth argument to calculate the loss function to avoid confusion :)


    While reviewing your amazing project, I noticed that the EmotionData class of the dataloader.py file is returning:

    {
        ...
       # start_tokens
       "start_tokens": torch.tensor(start_tokens, dtype=torch.long),
       # end_tokens
       "end_tokens": torch.tensor(end_tokens, dtype=torch.long),
    }
    

    But in the engine.py file you are passing start_tokens for both the third and fourth arguments of the loss_fn():

    loss = loss_fn(
                start, end, torch.argmax(data["start_tokens"], axis=1), torch.argmax(data["start_tokens"], axis=1)
            )
    

    But the fourth has to be end_tokens. This minor change will not affect the loss_fn() output function since they are equal in all cases [=1].But, to respect conventions and avoid confusion, it would be better if it looks like the one shown below on the right:

    image

    opened by zekaouinoureddine 0
Releases(v1.0.0)
Owner
Shahul ES
Data Scientist | Kaggle GrandMaster ( Rank 20) | Opensource @mljar
Shahul ES
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。

SimpleChinese2 SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。 声明 本项目是为方便个人工作所创建的,仅有部分代码原创。

Ming 30 Dec 02, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Explosion 1.2k Jan 08, 2023
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022