Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Overview

Ancient Greek BERT

The first and only available Ancient Greek sub-word BERT model!

State-of-the-art post fine-tuning on Part-of-Speech Tagging and Morphological Analysis.

Pre-trained weights are made available for a standard 12 layer, 768d BERT-base model.

You can also use the model directly on the HuggingFace Model Hub here.

Please refer to our paper titled: "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek". In Proceedings of The 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2021).

How to use

Requirements:

pip install transformers
pip install unicodedata
pip install flair

Can be directly used from the HuggingFace Model Hub with:

from transformers import AutoTokenizer, AutoModel
tokeniser = AutoTokenizer.from_pretrained("pranaydeeps/Ancient-Greek-BERT")
model = AutoModel.from_pretrained("pranaydeeps/Ancient-Greek-BERT")  

Fine-tuning for POS/Morphological Analysis

  • finetune_pos.py can be used to finetune the BERT model for POS tagging on your own data. We provide sample files from the Gold standard treebanks, however the full treebanks can't be made available at this time. Please contact the authors for more details.
  • Even though the full treebanks aren't made available, we provide a pre-trained POS Tagging model in the directory SuperPeitho-FLAIR-v2, which can directly be used for inference and has an accuracy of ~90 percent on the 3 treebanks available. You can import the pre-trained model in FLAIR with:
from flair.models import SequenceTagger
tagger = SequenceTagger.load('SuperPeitho-FLAIR-v2/final-model.pt')

Training data

The model was initialised from AUEB NLP Group's Greek BERT and subsequently trained on monolingual data from the First1KGreek Project, Perseus Digital Library, PROIEL Treebank and Gorman's Treebank

Training and Eval details

Standard de-accentuating and lower-casing for Greek as suggested in AUEB NLP Group's Greek BERT. The model was trained on 4 NVIDIA Tesla V100 16GB GPUs for 80 epochs, with a max-seq-len of 512 and results in a perplexity of 4.8 on the held out test set. It also gives state-of-the-art results when fine-tuned for PoS Tagging and Morphological Analysis on all 3 treebanks averaging >90% accuracy. Please consult our paper or contact me for further questions!

Cite

If you end up using Ancient-Greek-BERT in your research, please cite the paper:

@inproceedings{ancient-greek-bert,
author = {Singh, Pranaydeep and Rutten, Gorik and Lefever, Els},
title = {A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek},
year = {2021},
booktitle = {The 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2021)}
}
You might also like...
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

The implementation of our CIKM 2021 paper titled as:
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser. This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders
Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders

MultiMAE: Multi-modal Multi-task Masked Autoencoders Roman Bachmann*, David Mizrahi*, Andrei Atanov, Amir Zamir Website | arXiv | BibTeX Official PyTo

Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Comments
  • Morphological Analysis Examples

    Morphological Analysis Examples

    @pranaydeeps Is possible to add simple code example how to do morphological analysis of some short ancient greek sentence? Maybe some examples of:

    • POS tagging
    • cosine sentence similarity

    Thank You very much for the model. I tried to train smaller BERT model but i didn't have enough GPU resources. I would like to use your model for New Testament analysis.

    documentation 
    opened by PeterPirog 3
Releases(v1.0.0)
Owner
Pranaydeep Singh
Doctoral Researcher in Computational Linguistics @GhentUniversity
Pranaydeep Singh
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022