GeneralOCR is open source Optical Character Recognition based on PyTorch.

Overview

Introduction

GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on OCR domain. You can use them to infer and train the model with your customized dataset. The solution architecture of this project is re-implemented from facebook Detectron and openmm-cv.

Installation

Refer to the guideline of gen_ocr installation

Inference

Configuration

Model text detection

Supported Algorithms:

Text Detection
Algorithm Paper Python argument (--det)
- [x] DBNet (AAAI'2020) https://arxiv.org/pdf/1911.08947 DB_r18, DB_r50
- [x] Mask R-CNN (ICCV'2017) https://arxiv.org/abs/1703.06870 MaskRCNN_CTW, MaskRCNN_IC15, MaskRCNN_IC17
- [x] PANet (ICCV'2019) https://arxiv.org/abs/1908.06391 PANet_CTW, PANet_IC15
- [x] PSENet (CVPR'2019) https://arxiv.org/abs/1903.12473 PS_CTW, PS_IC15
- [x] TextSnake (ECCV'2018) https://arxiv.org/abs/1807.01544 TextSnake
- [x] DRRG (CVPR'2020) https://arxiv.org/abs/2003.07493 DRRG
- [x] FCENet (CVPR'2021) https://arxiv.org/abs/2104.10442 FCE_IC15, FCE_CTW_DCNv2

Table 1: Text detection algorithms, papers and arguments configuration in package.

Model text recognition

Text Recognition
Algorithm Paper Python argument (--recog)
- [x] CRNN (TPAMI'2016) https://arxiv.org/abs/1507.05717 CRNN, CRNN_TPS
- [x] NRTR (ICDAR'2019) https://arxiv.org/abs/1806.00926 NRTR_1/8-1/4, NRTR_1/16-1/8
- [x] RobustScanner (ECCV'2020) https://arxiv.org/abs/2007.07542 RobustScanner
- [x] SAR (AAAI'2019) https://arxiv.org/abs/1811.00751 SAR
- [x] SATRN (CVPR'2020 Workshop on Text and Documents in the Deep Learning Era) https://arxiv.org/abs/1910.04396 SATRN, SATRN_sm
- [x] SegOCR (Manuscript'2021) - SEG

Table 2: Text recognition algorithms, papers and arguments configuration in package.

Inference

# Activate your conda environment
conda activate gen_ocr
python general_ocr/utils/ocr.py demo/demo_text_ocr_2.jpg --print-result --imshow --det TextSnake --recog SEG

--det and --recog argument values are supplied in table 1 and table 2.

The result as below:

demo image 1

Training

Training with toy dataset

We prepare toy datasets for you to train on /tests/data folder in which you can do your experiment before training with the official datasets.

python tools/train.py configs/textrecog/robust_scanner/seg_r31_1by16_fpnocr_toy_dataset.py --work-dir seg

To change text recognition algorithm into sag:

python tools/train.py configs/textrecog/sar/sar_r31_parallel_decoder_toy_dataset.py --work-dir sar

Training with Academic dataset

When you train Academic dataset, you need to setup dataset directory as this guideline. The main point you should forecus is that your model point to the right dataset directory. Assume that you want to train model TextSnake on CTW1500 dataset, thus your config file of that model in configs/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py should be as below:

dataset_type = 'IcdarDataset'
data_root = 'data/ctw1500/'


data = dict(
    samples_per_gpu=4,
    workers_per_gpu=4,
    val_dataloader=dict(samples_per_gpu=1),
    test_dataloader=dict(samples_per_gpu=1),
    train=dict(
        type=dataset_type,
        ann_file=f'{data_root}/instances_training.json',
        img_prefix=f'{data_root}/imgs',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=f'{data_root}/instances_test.json',
        img_prefix=f'{data_root}/imgs',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=f'{data_root}/instances_test.json',
        img_prefix=f'{data_root}/imgs',
        pipeline=test_pipeline))

Your data_root folder data/ctw1500/ have to be right. Afterward, train your model:

python tools/train.py configs/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py --work-dir textsnake

To study other configuration parameters on training.

Testing

Now you completed training of TextSnake and get the checkpoint textsnake/lastest.pth. You should evaluate peformance on test set using hmean-iou metric:

python tools/test.py configs/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py textsnake/latest.pth --eval hmean-iou

Citation

If you find this project is useful in your reasearch, kindly consider cite:

@article{genearal_ocr,
    title={GeneralOCR:  A Comprehensive package for OCR models},
    author={khanhphamdinh},
    email= {[email protected]},
    year={2021}
}
You might also like...
 a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

 OpenGAN: Open-Set Recognition via Open Data Generation
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Face Library is an open source package for accurate and real-time face detection and recognition
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

CharacterGAN: Few-Shot Keypoint Character Animation and Reposing
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

An addon uses SMPL's poses and global translation to drive cartoon character in Blender.
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

Comments
  • Please consider License seriously

    Please consider License seriously

    I found that your repository is based on the mmocr repo of OpenMMLab (https://github.com/open-mmlab/mmocr). Please at least cite the repo and preserve the copyrights before redistribution to acknowledge the authors' works.

    Thanks.

    opened by VinhLoiIT 1
  • Import error: undefine symbol

    Import error: undefine symbol

    Dear author, When I run the test command: python general_ocr/utils/ocr.py demo/mrbean.png --print-result --imshow --det TextSnake --recog SEG

    The output error is like this: ImportError: /home/avlab/general_ocr/general_ocr/_ext.cpython-37m-x86_64-linux-gnu.so: undefined symbol: _Z42SigmoidFocalLossBackwardCUDAKernelLauncherN2at6TensorES0_S0_S0_ff

    Do you know the problem and how to fix that, please?

    opened by theohsiung 0
  • ModuleNotFoundError: No module named 'general_ocr._ext'

    ModuleNotFoundError: No module named 'general_ocr._ext'

    Dear author, When I run the test command: python general_ocr/utils/ocr.py demo/mrbean.png --print-result --imshow --det TextSnake --recog SEG

    The output error is like this: ModuleNotFoundError: No module named 'general_ocr._ext', although I have installed the repo following the instruction in https://github.com/phamdinhkhanh/general_ocr/blob/main/docs/install.md.

    Do you know the problem and how to fix that, please?

    opened by ngthanhtin 3
  • ImportError: /usr/lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.26' not found

    ImportError: /usr/lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.26' not found

    Setup:

    Screen Shot 2021-10-17 at 1 17 03 AM

    Log ERROR:

    Traceback (most recent call last):
      File "general_ocr/utils/ocr.py", line 7, in <module>
        import general_ocr
      File "/usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/__init__.py", line 10, in <module>
        from .apis import *
      File "/usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/apis/__init__.py", line 2, in <module>
        from .inference import init_detector, model_inference, inference_detector
      File "/usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/apis/inference.py", line 10, in <module>
        from general_ocr.core import get_classes
      File "/usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/core/__init__.py", line 4, in <module>
        from .bbox import *  # noqa: F401, F403
      File "/usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/core/bbox/__init__.py", line 8, in <module>
        from .samplers import (BaseSampler, CombinedSampler,
      File "/usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/core/bbox/samplers/__init__.py", line 10, in <module>
        from .score_hlr_sampler import ScoreHLRSampler
      File "/usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/core/bbox/samplers/score_hlr_sampler.py", line 3, in <module>
        from general_ocr.ops import nms_match
      File "/usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/ops/__init__.py", line 2, in <module>
        from .ball_query import ball_query
      File "/usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/ops/ball_query.py", line 7, in <module>
        ext_module = ext_loader.load_ext('_ext', ['ball_query_forward'])
      File "/usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/utils/ext_loader.py", line 13, in load_ext
        ext = importlib.import_module('general_ocr.' + name)
      File "/usr/lib/python3.7/importlib/__init__.py", line 127, in import_module
        return _bootstrap._gcd_import(name[level:], package, level)
    ImportError: /usr/lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.26' not found (required by /usr/local/lib/python3.7/dist-packages/general_ocr-0.0.1-py3.7.egg/general_ocr/_ext.cpython-37m-x86_64-linux-gnu.so)
    
    opened by Baristi000 1
Releases(general_ocr-0.0.1)
  • general_ocr-0.0.1(Oct 26, 2021)

    • Launch Project
    • Model support:
      • text detection: DBNet, Mask-RCNN, PANet, PSENet, TextSnake, DRRG, FCENet
      • text recognition: CRNN, NRTR, RobustScanner, SAR, SATRN, SegOCR
    Source code(tar.gz)
    Source code(zip)
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022