Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Overview

Transformer Quantization

This repository contains the implementation and experiments for the paper presented in

Yelysei Bondarenko1, Markus Nagel1, Tijmen Blankevoort1, "Understanding and Overcoming the Challenges of Efficient Transformer Quantization", EMNLP 2021. [ACL Anthology] [ArXiv]

1 Qualcomm AI Research (Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.)

Reference

If you find our work useful, please cite

@inproceedings{bondarenko-etal-2021-understanding,
    title = "Understanding and Overcoming the Challenges of Efficient Transformer Quantization",
    author = "Bondarenko, Yelysei  and
      Nagel, Markus  and
      Blankevoort, Tijmen",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.627",
    pages = "7947--7969",
    abstract = "Transformer-based architectures have become the de-facto standard models for a wide range of Natural Language Processing tasks. However, their memory footprint and high latency are prohibitive for efficient deployment and inference on resource-limited devices. In this work, we explore quantization for transformers. We show that transformers have unique quantization challenges {--} namely, high dynamic activation ranges that are difficult to represent with a low bit fixed-point format. We establish that these activations contain structured outliers in the residual connections that encourage specific attention patterns, such as attending to the special separator token. To combat these challenges, we present three solutions based on post-training quantization and quantization-aware training, each with a different set of compromises for accuracy, model size, and ease of use. In particular, we introduce a novel quantization scheme {--} per-embedding-group quantization. We demonstrate the effectiveness of our methods on the GLUE benchmark using BERT, establishing state-of-the-art results for post-training quantization. Finally, we show that transformer weights and embeddings can be quantized to ultra-low bit-widths, leading to significant memory savings with a minimum accuracy loss. Our source code is available at \url{https://github.com/qualcomm-ai-research/transformer-quantization}.",
}

How to install

First, ensure locale variables are set as follows:

export LC_ALL=C.UTF-8
export LANG=C.UTF-8

Second, make sure to have Python ≥3.6 (tested with Python 3.6.8) and ensure the latest version of pip (tested with 21.2.4):

pip install --upgrade --no-deps pip

Next, install PyTorch 1.4.0 with the appropriate CUDA version (tested with CUDA 10.0, CuDNN 7.6.3):

pip install torch==1.4.0 torchvision==0.5.0 -f https://download.pytorch.org/whl/torch_stable.html

Finally, install the remaining dependencies using pip:

pip install -r requirements.txt

To run the code, the project root directory needs to be added to your pythonpath:

export PYTHONPATH="${PYTHONPATH}:/path/to/this/dir"

Running experiments

The main run file to reproduce all experiments is main.py. It contains 4 commands to train and validate FP32 and quantized model:

Usage: main.py [OPTIONS] COMMAND [ARGS]...

Options:
  --help  Show this message and exit.

Commands:
  train-baseline
  train-quantized
  validate-baseline
  validate-quantized

You can see the full list of options for each command using python main.py [COMMAND] --help.

A. FP32 fine-tuning

To start with, you need to get the fune-tuned model(s) for the GLUE task of interest. Example run command for fine-tuning:

python main.py train-baseline --cuda --save-model --model-name bert_base_uncased --task rte \
    --learning-rate 3e-05 --batch-size 8 --eval-batch-size 8 --num-epochs 3 --max-seq-length 128 \
    --seed 1000 --output-dir /path/to/output/dir/

You can also do it directly using HuggingFace library [examples]. In all experiments we used seeds 1000 - 1004 and reported the median score. The sample output directory looks as follows:

/path/to/output/dir
├── config.out
├── eval_results_rte.txt
├── final_score.txt
├── out
│   ├── config.json  # Huggingface model config
│   ├── pytorch_model.bin  # PyTorch model checkpoint
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json  # Huggingface tokenizer config
│   ├── training_args.bin
│   └── vocab.txt  # Vocabulary
└── tb_logs  # TensorBoard logs
    ├── 1632747625.1250594
    │   └── events.out.tfevents.*
    └── events.out.tfevents.*

For validation (both full-precision and quantized), it is assumed that these output directories with the fine-tuned checkpoints are aranged as follows (you can also use a subset of GLUE tasks):

/path/to/saved_models/
├── rte/rte_model_dir
│   ├── out
│   │   ├── config.json  # Huggingface model config
│   │   ├── pytorch_model.bin  # PyTorch model checkpoint
│   │   ├── tokenizer_config.json  # Huggingface tokenizer config
│   │   ├── vocab.txt  # Vocabulary
│   │   ├── (...)
├── cola/cola_model_dir
│   ├── out
│   │   ├── (...)
├── mnli/mnli_model_dir
│   ├── out
│   │   ├── (...)
├── mrpc/mrpc_model_dir
│   ├── out
│   │   ├── (...)
├── qnli/qnli_model_dir
│   ├── out
│   │   ├── (...)
├── qqp/qqp_model_dir
│   ├── out
│   │   ├── (...)
├── sst2/sst2_model_dir
│   ├── out
│   │   ├── (...)
└── stsb/stsb_model_dir
    ├── out
    │   ├── (...)

Note, that you have to create this file structure manually.

The model can then be validated as follows:

python main.py validate-baseline --eval-batch-size 32 --seed 1000 --model-name bert_base_uncased \
    --model-path /path/to/saved_models/ --task rte

You can also validate multiple or all checkpoints by specifying --task --task [...] or --task all, respectively.

B. Post-training quantization (PTQ)

1) Standard (naïve) W8A8 per-tensor PTQ / base run command for all PTQ experiments

python main.py validate-quantized --act-quant --weight-quant --no-pad-to-max-length \
	--est-ranges-no-pad --eval-batch-size 16 --seed 1000 --model-path /path/to/saved_models/ \
	--task rte --n-bits 8 --n-bits-act 8 --qmethod symmetric_uniform \
	--qmethod-act asymmetric_uniform --weight-quant-method MSE --weight-opt-method golden_section \
	--act-quant-method current_minmax --est-ranges-batch-size 1 --num-est-batches 1 \
	--quant-setup all

Note that the range estimation settings are slightly different for each task.

2) Mixed precision W8A{8,16} PTQ

Specify --quant-dict "{'y': 16, 'h': 16, 'x': 16}":

  • 'x': 16 will set FFN's input to 16-bit
  • 'h': 16 will set FFN's output to 16-bit
  • 'y': 16 will set FFN's residual sum to 16-bit

For STS-B regression task, you will need to specify --quant-dict "{'y': 16, 'h': 16, 'x': 16, 'P': 16, 'C': 16}" and --quant-setup MSE_logits, which will also quantize pooler and the final classifier to 16-bit and use MSE estimator for the output.

3) Per-embedding and per-embedding-group (PEG) activation quantization

  • --per-embd -- Per-embedding quantization for all activations
  • --per-groups [N_GROUPS] -- PEG quantization for all activations, no permutation
  • --per-groups [N_GROUPS] --per-groups-permute -- PEG quantization for all activations, apply range-based permutation (separate for each quantizer)
  • --quant-dict "{'y': 'ng6', 'h': 'ng6', 'x': 'ng6'}" -- PEG quantization using 6 groups for FFN's input, output and residual sum, no permutation
  • --quant-dict "{'y': 'ngp6', 'h': 'ngp6', 'x': 'ngp6'}" --per-groups-permute-shared-h -- PEG quantization using 6 groups for FFN's input, output and residual sum, apply range-based permutation (shared between tensors in the same layer)

4) W4A32 PTQ with AdaRound

python main.py validate-quantized --weight-quant --no-act-quant --no-pad-to-max-length \
	--est-ranges-no-pad --eval-batch-size 16 --seed 1000 --model-path /path/to/saved_models/ \
	--task rte --qmethod symmetric_uniform --qmethod-act asymmetric_uniform --n-bits 4 \
	--weight-quant-method MSE --weight-opt-method grid --num-candidates 100 --quant-setup all \
	--adaround all --adaround-num-samples 1024 --adaround-init range_estimator \
	--adaround-mode learned_hard_sigmoid --adaround-asym --adaround-iters 10000 \
	--adaround-act-quant no_act_quant

C. Quantization-aware training (QAT)

Base run command for QAT experiments (using W4A8 for example):

python main.py train-quantized --cuda --do-eval --logging-first-step --weight-quant --act-quant \
	--pad-to-max-length --learn-ranges --tqdm --batch-size 8 --seed 1000 \
	--model-name bert_base_uncased --learning-rate 5e-05 --num-epochs 6 --warmup-steps 186 \
	--weight-decay 0.0 --attn-dropout 0.0 --hidden-dropout 0.0 --max-seq-length 128 --n-bits 4 \
	--n-bits-act 8 --qmethod symmetric_uniform --qmethod-act asymmetric_uniform \
	--weight-quant-method MSE --weight-opt-method golden_section --act-quant-method current_minmax \
	--est-ranges-batch-size 16 --num-est-batches 1 --quant-setup all \
	--model-path /path/to/saved_models/rte/out --task rte --output-dir /path/to/qat_output/dir

Note that the settings are slightly different for each task (see Appendix).

To run mixed-precision QAT with 2-bit embeddings and 4-bit weights, add --quant-dict "{'Et': 2}".

Owner
An initiative of Qualcomm Technologies, Inc.
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021