Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

Overview

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation
Official PyTorch implementation of the NeurIPS 2021 paper

teaser

Mingcong Liu, Qiang Li, Zekui Qin, Guoxin Zhang, Pengfei Wan, Wen Zheng

Y-tech, Kuaishou Technology

Project page | Paper

Abstract: Generative Adversarial Networks (GANs) have made a dramatic leap in high-fidelity image synthesis and stylized face generation. Recently, a layer-swapping mechanism has been developed to improve the stylization performance. However, this method is incapable of fitting arbitrary styles in a single model and requires hundreds of style-consistent training images for each style. To address the above issues, we propose BlendGAN for arbitrary stylized face generation by leveraging a flexible blending strategy and a generic artistic dataset. Specifically, we first train a self-supervised style encoder on the generic artistic dataset to extract the representations of arbitrary styles. In addition, a weighted blending module (WBM) is proposed to blend face and style representations implicitly and control the arbitrary stylization effect. By doing so, BlendGAN can gracefully fit arbitrary styles in a unified model while avoiding case-by-case preparation of style-consistent training images. To this end, we also present a novel large-scale artistic face dataset AAHQ. Extensive experiments demonstrate that BlendGAN outperforms state-of-the-art methods in terms of visual quality and style diversity for both latent-guided and reference-guided stylized face synthesis.

Updates

✔️ (2021-11-19) Inference code and pretrained models have been released!

000041 000021

Pre-trained Models

You can download the following pretrained models to ./pretrained_models:

Model Discription
blendgan BlendGAN model (together with style_encoder)
psp_encoder PSP Encoder model
style_encoder Individual Style Encoder model (optional)

Inference

1. Generate image pairs with random face codes

  • for latent-guided generation, run:
python generate_image_pairs.py --size 1024 --pics N_PICS --ckpt ./pretrained_models/blendgan.pt --outdir results/generated_pairs/latent_guided/
  • for reference-guided generation, run:
python generate_image_pairs.py --size 1024 --pics N_PICS --ckpt ./pretrained_models/blendgan.pt --style_img ./test_imgs/style_imgs/100036.png --outdir results/generated_pairs/reference_guided/

2. Style tranfer with given face images

python style_transfer_folder.py --size 1024 --ckpt ./pretrained_models/blendgan.pt --psp_encoder_ckpt ./pretrained_models/psp_encoder.pt --style_img_path ./test_imgs/style_imgs/ --input_img_path ./test_imgs/face_imgs/ --outdir results/style_transfer/

3. Generate interpolation videos

python gen_video.py --size 1024 --ckpt ./pretrained_models/blendgan.pt --psp_encoder_ckpt ./pretrained_models/psp_encoder.pt --style_img_path ./test_imgs/style_imgs/ --input_img_path ./test_imgs/face_imgs/ --outdir results/inter_videos/

Bibtex

If you use this code for your research, please cite our paper:

@inproceedings{liu2021blendgan,
    title = {BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation},
    author = {Liu, Mingcong and Li, Qiang and Qin, Zekui and Zhang, Guoxin and Wan, Pengfei and Zheng, Wen},
    booktitle = {Advances in Neural Information Processing Systems},
    year = {2021}
}

Credits

StyleGAN2 model and implementation:
https://github.com/rosinality/stylegan2-pytorch
Copyright (c) 2019 Kim Seonghyeon
License (MIT) https://github.com/rosinality/stylegan2-pytorch/blob/master/LICENSE

IR-SE50 model and implementations:
https://github.com/TreB1eN/InsightFace_Pytorch
Copyright (c) 2018 TreB1eN
License (MIT) https://github.com/TreB1eN/InsightFace_Pytorch/blob/master/LICENSE

pSp model and implementation:
https://github.com/eladrich/pixel2style2pixel
Copyright (c) 2020 Elad Richardson, Yuval Alaluf
License (MIT) https://github.com/eladrich/pixel2style2pixel/blob/master/LICENSE

Please Note:

Acknowledgements

We sincerely thank all the reviewers for their comments. We also thank Zhenyu Guo for help in preparing the comparison to StarGANv2. This code borrows heavily from the pytorch re-implementation of StyleGAN2 by rosinality.

Owner
onion
GAN, Style Transfer, Image Enhancement, Infrared Image, HDR
onion
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022