Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Overview

Permuton-induced Chinese Restaurant Process

animationMCMCepinions

Note: Currently only the Matlab version is available, but a Python version will be available soon!

This is a demo code for Bayesian nonparametric relational data analysis based on Permuton-induced Chinese Restaurant Process (NeurIPS, 2021). The key features are listed as follows:

  • Clustering based on rectangular partitioning: For an input matrix, the algorithm probabilistically searches for the row and column order and rectangular partitioning so that similar elements are clustered in each block as much as possible.
  • Infinite model complexity: There is no need to fix the suitable number of rectangle clusters in advance, which is a fundamental principle of Bayesian nonparametric machine learning.
  • Arbitrary rectangular partitioning: It can potentially obtain a posterior distribution on arbitrary rectangular partitioning with any numbers of rectangle blocks.
  • Empirically faster mixing of Markov chain Monte Carlo (MCMC) iterations: The method most closely related to this algorithm is the Baxter Permutation Process (NeurIPS, 2020). Typically, this algorithm seems to be able to mix MCMC faster than the Baxter permutation process empirically.

You will need a basic MATLAB installation with Statistics and Machine Learning Toolbox.

In a nutshell

  1. cd permuton-induced-crp
  2. run

Then, the MCMC evolution will appear like the gif animation at the top of this page. The following two items are particularly noteworthy.

  • Top center: Probabilistic rectangular partitioning of a sample matrix (irmdata\sampledata.mat ).
  • Bottom right: Posterior probability.

Interpretation of analysis results

model

The details of the visualization that will be drawn while running the MCMC iterations require additional explanation of our model. Please refer to the paper for more details. Our model, an extension of the Chinese Restaurant Process (CRP), consists of a generative probabilistic model as shown in the figure above (taken from the original paper). While the standard CRP achieves sequence clustering by the analogy of placing customers (data) on tables (clusters), our model additionally achieves array clustering by giving the random table coordinates on [0,1]x[0,1] drawn from the permuton. By viewing the table coordinates as a geometric representation of a permutation, we can use the permutation-to-rectangulation transformation to obtain a rectangular partition of the matrix.

  • Bottom center: Random coordinates of the CRP tables on [0,1]x[0,1]. The size of each table (circle) reflects the number of customers sitting at that table.
  • Top left: Diagonal rectangulation corresponding to the permutation represented by the table coordinates.
  • Bottom left: Generic rectangulation corresponding to the permutation represented by the table coordinates.

Details of usage

Given an input relational matrix, the Permuton-induced Chinese Restaurant Process can be fitted to it by a MCMC inference algorithm as follows:

[RowTable, ColumnTable, TableCoordinates, nesw] = test_MCMC_PCRP(X);

or

[RowTable, ColumnTable, TableCoordinates, nesw] = test_MCMC_PCRP(X, opt);

  • X: An M by N input observation matrix. Each element must be natural numbers.
  • opt.maxiter: Maximum number of MCMC iterations.
  • opt.missingRatio: Ratio of test/(training+test) for prediction performance evaluation based on perplexity.

Reference

  1. M. Nakano, Yasuhiro Fujiwara, A. Kimura, T. Yamada, and N. Ueda, 'Permuton-induced Chinese Restaurant Process,' Advances in Neural Information Processing Systems 34 (NeurIPS 2021).

    @inproceedings{Nakano2021,
     author = {Nakano, Masahiro and Fujiwara, Yasuhiro and Kimura, Akisato and Yamada, Takeshi and Ueda, Naonori},
     booktitle = {Advances in Neural Information Processing Systems},
     pages = {},
     publisher = {Curran Associates, Inc.},
     title = {Permuton-induced Chinese Restaurant Process},
     url = {},
     volume = {34},
     year = {2021}
    }
    
Owner
NTT Communication Science Laboratories
NTT Communication Science Laboratories
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022