Pre-trained NFNets with 99% of the accuracy of the official paper

Overview

NFNet Pytorch Implementation

This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale Image Recognition Without Normalization. The small models are as accurate as an EfficientNet-B7, but train 8.7 times faster. The large models set a new SOTA top-1 accuracy on ImageNet.

NFNet F0 F1 F2 F3 F4 F5 F6+SAM
Top-1 accuracy Brock et al. 83.6 84.7 85.1 85.7 85.9 86.0 86.5
Top-1 accuracy this implementation 82.82 84.63 84.90 85.46 85.66 85.62 TBD

All credits go to the authors of the original paper. This repo is heavily inspired by their nice JAX implementation in the official repository. Visit their repo for citing.

Get started

git clone https://github.com/benjs/nfnets_pytorch.git
pip3 install -r requirements.txt

Download pretrained weights from the official repository and place them in the pretrained folder.

from pretrained import pretrained_nfnet
model_F0 = pretrained_nfnet('pretrained/F0_haiku.npz')
model_F1 = pretrained_nfnet('pretrained/F1_haiku.npz')
# ...

The model variant is automatically derived from the parameter count in the pretrained weights file.

Validate yourself

python3 eval.py --pretrained pretrained/F0_haiku.npz --dataset path/to/imagenet/valset/

You can download the ImageNet validation set from the ILSVRC2012 challenge site after asking for access with, for instance, your .edu mail address.

Scaled weight standardization convolutions in your own model

Simply replace all your nn.Conv2d with WSConv2D and all your nn.ReLU with VPReLU or VPGELU (variance preserving ReLU/GELU).

import torch.nn as nn
from model import WSConv2D, VPReLU, VPGELU

# Simply replace your nn.Conv2d layers
class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
 
        self.activation = VPReLU(inplace=True) # or VPGELU
        self.conv0 = WSConv2D(in_channels=128, out_channels=256, kernel_size=1, ...)
        # ...

    def forward(self, x):
      out = self.activation(self.conv0(x))
      # ...

SGD with adaptive gradient clipping in your own model

Simply replace your SGD optimizer with SGD_AGC.

from optim import SGD_AGC

optimizer = SGD_AGC(
        named_params=model.named_parameters(), # Pass named parameters
        lr=1e-3,
        momentum=0.9,
        clipping=0.1, # New clipping parameter
        weight_decay=2e-5, 
        nesterov=True)

It is important to exclude certain layers from clipping or momentum. The authors recommends to exclude the last fully convolutional from clipping and the bias/gain parameters from weight decay:

import re

for group in optimizer.param_groups:
    name = group['name'] 
    
    # Exclude from weight decay
    if len(re.findall('stem.*(bias|gain)|conv.*(bias|gain)|skip_gain', name)) > 0:
        group['weight_decay'] = 0

    # Exclude from clipping
    if name.startswith('linear'):
        group['clipping'] = None

Train your own NFNet

Adjust your desired parameters in default_config.yaml and start training.

python3 train.py --dataset /path/to/imagenet/

There is still some parts missing for complete training from scratch:

  • Multi-GPU training
  • Data augmentations
  • FP16 activations and gradients

Contribute

The implementation is still in an early stage in terms of usability / testing. If you have an idea to improve this repo open an issue, start a discussion or submit a pull request.

Development status

  • Pre-trained NFNet Models
    • F0-F5
    • F6+SAM
    • Scaled weight standardization
    • Squeeze and excite
    • Stochastic depth
    • FP16 activations
  • SGD with unit adaptive gradient clipping (SGD-AGC)
    • Exclude certain layers from weight-decay, clipping
    • FP16 gradients
  • PyPI package
  • PyTorch hub submission
  • Label smoothing loss from Szegedy et al.
  • Training on ImageNet
  • Pre-trained weights
  • Tensorboard support
  • general usability improvements
  • Multi-GPU support
  • Data augmentation
  • Signal propagation plots (from first paper)
Comments
  • ModuleNotFoundError: No module named 'haiku'

    ModuleNotFoundError: No module named 'haiku'

    when i try "python3 eval.py --pretrained pretrained/F0_haiku.npz --dataset ***" i got this error, have you ever met this error? how to fix this?

    opened by Rianusr 2
  • Trained without data augmentation?

    Trained without data augmentation?

    Thanks for the great work on the pytorch implementation of NFNet! The accuracies achieved by this implementation are pretty impressive also and I am wondering if these training results were simply derived from the training script, that is, without data augmentation.

    opened by nandi-zhang 2
  • from_pretrained_haiku

    from_pretrained_haiku

    https://github.com/benjs/nfnets_pytorch/blob/7b4d1cc701c7de4ee273ded01ce21cbdb1e60c48/nfnets/pretrained.py#L90

    model = from_pretrained_haiku(args.pretrained)

    where is 'from_pretrained_haiku' method?

    opened by vkmavani 0
  • About WSconv2d

    About WSconv2d

    I see the authoe's code, I find his WSconv2d pad_mod is 'same'. Pytorch's conv2d dono't have pad_mode, and I think your padding should greater 0, but I find your padding always be 0. I want to know why?

    I see you train.py your learning rate is constant, why? Thank you!

    opened by fancyshun 3
  • AveragePool

    AveragePool

    Hi, noticed that the AveragePool ('pool' layer) is not used in forward function. Instead, forward uses torch.mean. Removing the layer doesn't change pooling behavior. I tried using this model as a feature extractor and was a bit confused for a moment.

    opened by bogdankjastrzebski 1
Releases(v0.0.1)
Owner
Benjamin Schmidt
Engineering Student
Benjamin Schmidt
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022