The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

Overview

Savior

save your time.

只在Ubuntu18.04下完成全部测试,其他平台暂时未测试。

目前项目还处于早期开发阶段,如有任何问题,欢迎添加微信nsnovio,备注部署,进群交流。

背景

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

workflow的已经做好的轮子很多,例如perfectpolyaxondagster等。 之所以开发一个新的,主要原因是那些框架都太heavy了,对于大部分用户来说没法直接白嫖。

这个项目的核心目的就是能够减少大家的重复性开发,能够把绝大部分能够直接白嫖的东西放在框架里面,然后大家专注于自己的业务属性上,提升大家的工作效率。

特性

  1. 弹性伸缩:用户可以根据目前的请求量,自定义配置机器数。方便项目上量,并且保证服务器资源吃满(支持K8S)。
  2. 流程DAG:用户通过自定义自己的流程,框架支持DAG,保证流程的最高的并行度。
  3. 容灾能力强:集群中所有节点都是相同作用,不会因为部分节点挂掉而服务崩溃。
  4. 可扩展性强:框架主要是实现了一种设计模式,开发者只需要按照当前设计模式,扩展性无上限。
  5. 部署便捷:部署到上线不会超过5分钟(不考虑网速)。

依赖的第三方组件

  • rabbitmq:用于celery进行分布式的任务分发

  • triton:用于gpu端的模型服务的集中部署

  • milvus:用于特征向量搜索,存储【推荐有搜索需求的用户自行配置】

    如果觉得milvus太大,用户可以根据自己的自身情况直接使用faiss或者nmslib。并且自己实现对应helper。

框架中已集成的算法

更多开源模型欢迎在issue中补充,也十分欢迎您的PR。

人脸相关

OCR相关

  • DB 文本检测
  • CRNN 文本识别
  • 版式分析
  • 文本图像方向矫正
  • 文本方向检测
  • 常见扇形环形转换为矩形(针对于segmentation base的检测方案)

图像搜索

通用

  • NRIQA

官方已适配模型下载地址(不定时更新):

根据自己的需要下载模型,不用全部下载。

简单使用教程

  1. 克隆项目git clone https://github.com/novioleo/Savior.git到本地。或者下载release下面的source包。
  2. 启动rabbitmq,推荐使用docker启动:docker run --restart=always -d --hostname celery-broker --name celery-broker -p5672:5672 -p15672:15672 -e RABBITMQ_DEFAULT_USER=guest -e RABBITMQ_DEFAULT_PASS=guest rabbitmq:3-management
  3. 启动triton,推荐使用docker(需要安装nvidia-docker)启动:docker run --gpus=all --name=triton-server -p8000:8000 -p8001:8001 -v/path/to/your/model/repo/path:/models nvcr.io/nvidia/tritonserver:20.12-py3 tritonserver --model-repository=/models,其中/path/to/your/model/repo/path是网盘中triton文件夹下载的所在文件夹。
  4. 修改项目配置,进入Savior文件夹中,进入Deployment包中,复制server_config.py.template并重命名为server_config.py,修改里面triton、rabbitmq的配置。
  5. 配置python与安装依赖,通过控制台进入Savior文件夹中,创建环境:conda create -n SaviorEnv python=3.8,激活环境source activate SaviorEnv,安装依赖:python -m pip install nvidia-pyindex==1.0.6 && python -m pip install -r requirements.txt
  6. 启动ConsumerWorker,通过控制台进入Savior文件夹中,启动worker:celery -A Deployment.ConsumerWorker worker --loglevel=INFO,如果一切配置正确会显示已经成功加载Task。
  7. 启动DispatchServer,通过控制台进入Savior文件夹中,启动server:python Deployment/DispathServer.py,启动成功会看到端口信息等。
  8. 测试接口服务,推荐使用apifox进行接口调用测试,可以通过post请求测试ocr_interface/general_ocr接口,传入参数image_url,发送请求(第一次运行需要等待,模型需要预热,五次之后基本上时间会稳定),会得到一个OSS的路径,如果OSS使用的是Dummy(默认),则找到/tmp/DummyOSS-temp-directory/{bucket_name}/{path}对应的文件。

生产级使用教程点我

接口结果预览

OCR相关

自然场景下OCR

如何在自有项目下开发?

移步至:DevelopTutorial

感谢

感谢各位开源项目大佬的无私奉献。

Owner
Tao Luo
Algorithmer.
Tao Luo
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022