Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Overview

Memorizing Transformers - Pytorch

Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

This repository deviates from the paper slightly, using a hybrid attention across attention logits local and distant (rather than the sigmoid gate setup). It also uses cosine similarity attention (with learned temperature) for the KNN attention layer.

Install

$ pip install memorizing-transformers-pytorch

Usage

import torch
from memorizing_transformers_pytorch import MemorizingTransformer

model = MemorizingTransformer(
    num_tokens = 20000,                 # number of tokens
    dim = 512,                          # dimension
    dim_head = 64,                      # dimension per attention head
    depth = 8,                          # number of layers
    memorizing_layers = (4, 5),         # which layers to have ANN memories
    max_knn_memories = 64000,           # maximum ANN memories to keep (once it hits this capacity, it will be reset for now, due to limitations in faiss' ability to remove entries)
    num_retrieved_memories = 32,        # number of ANN memories to retrieve
    clear_memories_on_sos_token_id = 1, # clear passed in ANN memories automatically for batch indices which contain this specified SOS token id - otherwise, you can also manually iterate through the ANN memories and clear the indices before the next iteration
)

data = torch.randint(0, 20000, (2, 1024)) # mock data

knn_memories = model.create_knn_memories(batch_size = 2) # create collection of KNN memories with the correct batch size (2 in example)

logits = model(data, knn_memories = knn_memories) # (1, 1024, 20000)

You can make the KNN memories read-only by setting add_knn_memory on forward to False

ex.

logits = model(data, knn_memories = knn_memories, add_knn_memory = False) # knn memories will not be updated

With Transformer-XL memories (only the memories that will be discarded will be added to the KNN memory)

import torch
from memorizing_transformers_pytorch import MemorizingTransformer

model = MemorizingTransformer(
    num_tokens = 20000,
    dim = 512,
    depth = 8,
    memorizing_layers = (4, 5),
    max_knn_memories = 64000,
    num_retrieved_memories = 32,
    clear_memories_on_sos_token_id = 1,
    xl_memory_layers = (2, 3, 4, 5),      # xl memory layers - (https://arxiv.org/abs/2007.03356 shows you do not need XL memory on all layers, just the latter ones) - if a KNNAttention layer ends up using XL memories, only the XL memories that will be discarded will be added to long term memory
    xl_max_memories = 512,                # number of xl memories to keep
    shift_knn_memories_down = 1,          # let a layer look at the KNN memories this number of layers above
    shift_xl_memories_down = 1,           # let a layer look at the XL memories this number of layers above, shown to enhance receptive field in ernie-doc paper
)

data = torch.randint(0, 20000, (2, 1024)) # mock data

xl_memories = None

with model.knn_memories_context(batch_size = 2) as knn_memories:
    logits1, xl_memories = model(data, knn_memories = knn_memories, xl_memories = xl_memories)
    logits2, xl_memories = model(data, knn_memories = knn_memories, xl_memories = xl_memories)
    logits3, xl_memories = model(data, knn_memories = knn_memories, xl_memories = xl_memories)

    # ... and so on

KNN Memory

This repository contains a wrapper around Faiss that can automatically store and retrieve key / values

import torch
from memorizing_transformers_pytorch import KNNMemory

memory = KNNMemory(
    dim = 64,                   # dimension of key / values
    max_memories = 64000,       # maximum number of memories to keep (will throw out the oldest memories for now if it overfills)
    num_indices = 2             # this should be equivalent to batch dimension, as each batch keeps track of its own memories, expiring when it sees a new document
)

memory.add(torch.randn(2, 512, 2, 64))  # (batch, seq, key | value, feature dim)
memory.add(torch.randn(2, 512, 2, 64))

memory.clear([0]) # clear batch 0, if it saw an <sos>

memory.add(torch.randn(2, 512, 2, 64))
memory.add(torch.randn(2, 512, 2, 64))

key_values, mask = memory.search(torch.randn(2, 512, 64), topk = 32)

Training

Enwik8 training

$ python train.py

Todo

  • switch to ivfhnsw and just remember all memories
  • enwik8 demo
  • validation for enwik8
  • solve gradient accumulation problem by offering some way to scope reads and writes to knn memories with another indices array
  • setup text generation with memories
  • figure out how to deal with memories efficiently once capacity has been hit
  • try to speed up reading and writing to knn memories collection with multiprocessing

Citations

@article{wu2022memorizing,
  title   = {Memorizing transformers},
  author  = {Wu, Yuhuai and Rabe, Markus N and Hutchins, DeLesley and Szegedy, Christian},
  journal = {arXiv preprint arXiv:2203.08913},
  year    = {2022}
}
@article{Shazeer2019FastTD,
  title   = {Fast Transformer Decoding: One Write-Head is All You Need},
  author  = {Noam M. Shazeer},
  journal = {ArXiv},
  year    = {2019},
  volume  = {abs/1911.02150}
}
@Article{AlphaFold2021,
  author  = {Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'\i}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A A and Ballard, Andrew J and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis},
  journal = {Nature},
  title   = {Highly accurate protein structure prediction with {AlphaFold}},
  year    = {2021},
  doi     = {10.1038/s41586-021-03819-2},
  note    = {(Accelerated article preview)},
}
@inproceedings{Rae2020DoTN,
  title   = {Do Transformers Need Deep Long-Range Memory?},
  author  = {Jack W. Rae and Ali Razavi},
  booktitle = {ACL},
  year    = {2020}
}
@misc{ding2021erniedoc,
  title   = {ERNIE-Doc: A Retrospective Long-Document Modeling Transformer},
  author  = {Siyu Ding and Junyuan Shang and Shuohuan Wang and Yu Sun and Hao Tian and Hua Wu and Haifeng Wang},
  year    = {2021},
  eprint  = {2012.15688},
  archivePrefix = {arXiv},
  primaryClass = {cs.CL}
}
@misc{henry2020querykey,
    title   = {Query-Key Normalization for Transformers},
    author  = {Alex Henry and Prudhvi Raj Dachapally and Shubham Pawar and Yuxuan Chen},
    year    = {2020},
    eprint  = {2010.04245},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}

Memory is Attention through Time - Alex Graves

Comments
  • Arguments to reproduce the models from the original paper?

    Arguments to reproduce the models from the original paper?

    Hi lucidrains,

    This looks like excellent work! I have gone through the original paper and your repo, and am now trying to reproduce the model from the paper as closely as possible. Of course, the modifications you made such as hybrid attention instead of sigmoid gate are fine.

    Specifically, I would like to be able to try some of the variations in Table 4: image

    Suppose I'm interested in the 4th to last row with Context 512 Memory 8192 XL cache 512. Can you help me the model arguments to do that? Here is my initial attempt, with reference to Section 4.2:

    model = MemorizingTransformer(
        num_tokens = 32000, # vocab 32k
        dim = 1024, 
        depth = 12,
        memorizing_layers = 9,
        max_knn_memories = 8192, # Memory column
        num_retrieved_memories = 32,
        clear_memories_on_sos_token_id = 1,
        xl_memory_layers = (6, 7, 8, 9),  # not sure about this?
        xl_max_memories = 512, # XL cache column
        shift_knn_memories_down = 1, 
        shift_xl_memories_down = 1,
        # which argument corresponds to Context column?
    ).cuda()
    
    

    A second question is what are the model arguments to reproduce to first row of Table 4, with no memory nor XL cache? Thanks in advance.

    opened by manestay 1
  • KNNMemory add() does not appear to update self.knns

    KNNMemory add() does not appear to update self.knns

    Thanks for the nice implementation. I've adapted this code for my own use, so I don't have the whole stack that would reproduce this bug. However, you can check for yourself.

    The following code ought to update the KNN objects in the KNNMemory class:

    @delayed
    def knn_add(knn, key, db_offset):
        knn.add(key, ids = knn_insert_ids + db_offset)
    
    Parallel(n_jobs = self.n_jobs)(knn_add(*args) for args in zip(knns, keys, db_offsets))
    

    [link to that code here]

    However, even after repeated calls to add to the memory, calling KNNMemory.search() results in empty values. If you view self.knns at this point, self.is_trained remains False.

    When I modify the code as follows, this fixes the issue.

    @delayed
    def knn_add(knn, key, db_offset):
        knn.add(key, ids = knn_insert_ids + db_offset)
        return knn
    
    updated_knns = Parallel(n_jobs = self.n_jobs)(knn_add(*args) for args in zip(knns, keys, db_offsets))
    self.knns = updated_knns
    

    This will allow searches to return actual values.

    opened by vyaivo 0
  • FAISS hard reset

    FAISS hard reset

    Hello and thanks for this implementation!

    Do you know of any solutions to efficiently solve the "hard reset" problem in FAISS? I know that one could use IndexFlatL2 but that's not really efficient.

    Thank you!

    opened by itsdaniele 0
  •  index out of

    index out of

    when I run train.py, error like this ,"index out of range: Tried to access index 10218 out of table with 255 rows. at /pytorch/aten/src/TH/generic/THTensorEvenMoreMath.cpp:418"happens

    opened by chxiag 0
  • Support for Multi-GPU training?

    Support for Multi-GPU training?

    Thank you so much for the great implementation. I would like to ask whether your implementation for Memorizing Transformer could support multi-card distributed training like original paper. If you distribute the memorizingtrransformer model you created to each GPU, then every GPU would hold a memory with a retrieval faiss index. Therefore, each model on different GPU holds different memory database and retrieval index, which is different from the original paper. I regard that each model on different GPU should share the same retrieval context. This problem confuses me a lot.

    Thank you so much for your time. Looking forward to your response!

    opened by Victorwz 0
  • Dimensionality of key and values for Attention

    Dimensionality of key and values for Attention

    I have two questions about the key and value calculation in Attention (and similarly for KNNAttention).

    The relevant line is: https://github.com/lucidrains/memorizing-transformers-pytorch/blob/83fa1479d6f7881dd977fbff55681e709e3b250e/memorizing_transformers_pytorch/memorizing_transformers_pytorch.py#L135

    1. Why is there only one Linear layer to_kv, instead of 2 linear layers to_k and to_v?
    2. Why is the last dimension dim_head*2? I get that *2 is for both k and v, but what about dim_head? I thought q, k, v should all have the same final dimension (i.e. inner_dim==dim_head*heads). My understanding is that this means that either a) there is only 1 attention head, or for b) all heads, k and v are shared. Is there a reason this is done, or am I misunderstanding?

    In your Attention class for Performer, q, k, v all have the same dimensions.

    Thanks in advance!

    opened by manestay 8
  • Maybe scale is wrong

    Maybe scale is wrong

    https://github.com/lucidrains/memorizing-transformers-pytorch/blob/83fa1479d6f7881dd977fbff55681e709e3b250e/memorizing_transformers_pytorch/memorizing_transformers_pytorch.py#L237

    Shouldn't this be (1-scale)?

    opened by denadai2 3
Releases(0.3.10)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
A text file containing 479k English words for all your dictionary/word-based projects e.g: auto-completion / autosuggestion

List Of English Words A text file containing over 466k English words. While searching for a list of english words (for an auto-complete tutorial) I fo

dwyl 8.5k Jan 03, 2023
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
Understand Text Summarization and create your own summarizer in python

Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document. Technologies that can make a coherent

Sreekanth M 1 Oct 18, 2022
Transformers Wav2Vec2 + Parlance's CTCDecodeTransformers Wav2Vec2 + Parlance's CTCDecode

🤗 Transformers Wav2Vec2 + Parlance's CTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with Parlance's ctcdecode

Patrick von Platen 9 Jul 21, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
CPC-big and k-means clustering for zero-resource speech processing

The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.

Benjamin van Niekerk 5 Nov 23, 2022
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
The simple project to separate mixed voice (2 clean voices) to 2 separate voices.

Speech Separation The simple project to separate mixed voice (2 clean voices) to 2 separate voices. Result Example (Clisk to hear the voices): mix ||

vuthede 31 Oct 30, 2022
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea

Philipp Schmid 161 Dec 16, 2022