[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

Overview

ASSL

This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR), introduced in our NeurIPS 2021 Spotlight paper:

Aligned Structured Sparsity Learning for Efficient Image Super-Resolution [Camera Ready]
Yulun Zhang*, Huan Wang*, Can Qin, and Yun Fu (*Contribute Equally)
Northeastern University, Boston, MA, USA

Stay tuned!

You might also like...
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

PyTorch code for our paper
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

PyTorch code for our ECCV 2018 paper
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Comments
  • Could you share the code with me?

    Could you share the code with me?

    @MingSun-Tse Thanks for your excellent work. I read the paper ,and I want to learn the details. Could you share the paper with me? Thank you very much!!

    opened by ciwei123 3
  • Why simply use the first constrained layer as pruning template for all constrained layers?

    Why simply use the first constrained layer as pruning template for all constrained layers?

    From the observation of training results, the hard mask's weights between the constrained layers are not exactly aligned. https://github.com/MingSun-Tse/ASSL/blob/a564556c8b578c2ee86d135044f088bfeaafc707/src/pruner/utils.py#L71

    opened by yumath 2
  • Questions about implementation detail

    Questions about implementation detail

    hello , I have some questiones about implementation details.

    Data are obtained using the HR-LR data pairs obtained by the down-sampling code provided in BasicSR. The training data was DF2K (900 DIV2K + 2650 Flickr2K), and the test data was Set5.

    I run this command to prune the EDSR_16_256 model to EDSR_16_48. Only the pruning ratio and storage path name are modified compared to the command provided by the official.

    Prune from 256 to 48, pr=0.8125, x2, ASSL

    python main.py --model LEDSR --scale 2 --patch_size 96 --ext sep --dir_data /home/notebook/data/group_cpfs/wurongyuan/data/data
    --data_train DF2K --data_test DF2K --data_range 1-3550/3551-3555 --chop --save_results --n_resblocks 16 --n_feats 256
    --method ASSL --wn --stage_pr [0-1000:0.8125] --skip_layers *mean*,*tail*
    --same_pruned_wg_layers model.head.0,model.body.16,*body.2 --reg_upper_limit 0.5 --reg_granularity_prune 0.0001
    --update_reg_interval 20 --stabilize_reg_interval 43150 --pre_train pretrained_models/LEDSR_F256R16BIX2_DF2K_M311.pt
    --same_pruned_wg_criterion reg --save main/SR/LEDSR_F256R16BIX2_DF2K_ASSL_0.8125_RGP0.0001_RUL0.5_Pretrain_06011101 Results model_just_finished_prune ---> 33.739dB fine-tuning after one epoch ---> 37.781dB fine-tuning after 756 epoch ---> 37.940dB

    The result (37.940dB) I obtained with the code provided by the official is still a certain gap from the result in the paper (38.12dB). I should have overlooked some details.

    I also compared L1-norm method provided in the code. Prune from 256 to 48, pr=0.8125, x2, L1

    python main.py --model LEDSR --scale 2 --patch_size 96 --ext sep --dir_data /home/notebook/data/group_cpfs/wurongyuan/data/data
    --data_train DF2K --data_test DF2K --data_range 1-3550/3551-3555 --chop --save_results --n_resblocks 16 --n_feats 256
    --method L1 --wn --stage_pr [0-1000:0.8125] --skip_layers *mean*,*tail*
    --same_pruned_wg_layers model.head.0,model.body.16,*body.2 --reg_upper_limit 0.5 --reg_granularity_prune 0.0001
    --update_reg_interval 20 --stabilize_reg_interval 43150 --pre_train pretrained_models/LEDSR_F256R16BIX2_DF2K_M311.pt
    --same_pruned_wg_criterion reg --save main/SR/LEDSR_F256R16BIX2_DF2K_L1_0.8125_06011101

    Results

    model_just_finished_prune ---> 13.427dB fine-tuning after one epoch ---> 33.202dB fine-tuning after 756 epoch ---> 37.933dB

    The difference between the results of L1-norm method and those of ASSL seems negligible at this pruning ratio (256->48)

    Is there something I missed? Looking forward to your reply! >-<

    opened by wurongyuan 2
  • Questions on Data Preparation

    Questions on Data Preparation

    Hello and thanks for your amazing work! When I try to reproduce the paper results, I met some trouble binarizing the DF2K data:

    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3548x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3549x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3550x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_HR/3551.pt does not exist. Now making binary...
    Traceback (most recent call last):
    ...
    FileNotFoundError: No such file: '/home/nfs_data/shixiangsheng/projects/ModelCompression/Prune/ASSL/src/data/DF2K/DF2K_train_HR/3551.png'
    

    I created dirs like this: ----data |__DF2K |__DF2K_train_HR |__DF2K_train_LR_bicubic

    I put '0001.png' - '0900.png' from ./data/DIV2K/DIV2K_train_HR and '000001.png' - '002650.png' (renamed to '0901.png' - '3550.png') from .data/Flickr2K/Flickr2K_HR to ./DF2K/DF2K_train_HR. As for downsampled images, I created folders named in ['X2', 'X3', 'X4'] under ./DF2K/DF2K_train_LR_bicubic and copied related images from DIV2K_train_LR_bicubic and Flickr2K_LR_bicubic (with images renamed as '0001x_.png' to '3550x_.png'). At the first and second stages of binarization (binarizing HR images and X4 LR images), it seems OK, but then the above error emerged. It's kind of weird since the total training images are 900 + 2650 and I have no idea why it returned to binarize the HR images after binarizing X4 LR images. I'm new to SR and have tried to look up for data preparation of DF2K in other SR repos, but in vain. I wonder how you actually get DF2K images binarized. Thanks for your help in advance XD

    opened by YouCaiJun98 0
Releases(v0.1)
Owner
Huan Wang
B.E. and M.S. graduate from Zhejiang University, China. Now Ph.D. candidate at Northeastern, USA. I work on interpretable model compression and daydreaming.
Huan Wang
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023