Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Overview

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021)

by Qiming Hu, Xiaojie Guo.

Dependencies

  • Python3
  • PyTorch>=1.0
  • OpenCV-Python, TensorboardX, Visdom
  • NVIDIA GPU+CUDA

Network Architecture

figure_arch

🚀 1. Single Image Reflection Separation

Data Preparation

Training dataset

  • 7,643 images from the Pascal VOC dataset, center-cropped as 224 x 224 slices to synthesize training pairs.
  • 90 real-world training pairs provided by Zhang et al.

Tesing dataset

  • 45 real-world testing images from CEILNet dataset.
  • 20 real testing pairs provided by Zhang et al.
  • 454 real testing pairs from SIR^2 dataset, containing three subsets (i.e., Objects (200), Postcard (199), Wild (55)).

Usage

Training

  • For stage 1: python train_sirs.py --inet ytmt_ucs --model ytmt_model_sirs --name ytmt_ucs_sirs --hyper --if_align
  • For stage 2: python train_twostage_sirs.py --inet ytmt_ucs --model twostage_ytmt_model --name ytmt_uct_sirs --hyper --if_align --resume --resume_epoch xx --checkpoints_dir xxx

Testing

python test_sirs.py --inet ytmt_ucs --model twostage_ytmt_model --name ytmt_uct_sirs_test --hyper --if_align --resume --icnn_path ./checkpoints/ytmt_uct_sirs/twostage_unet_68_077_00595364.pt

Trained weights

Google Drive

Visual comparison on real20 and SIR^2

figure_eval

Visual comparison on real45

figure_test

🚀 2. Single Image Denoising

Data Preparation

Training datasets

400 images from the Berkeley segmentation dataset, following DnCNN.

Tesing datasets

BSD68 dataset and Set12.

Usage

Training

python train_denoising.py --inet ytmt_pas --name ytmt_pas_denoising --preprocess True --num_of_layers 9 --mode B --preprocess True

Testing

python test_denoising.py --inet ytmt_pas --name ytmt_pas_denoising_blindtest_25 --test_noiseL 25 --num_of_layers 9 --test_data Set68 --icnn_path ./checkpoints/ytmt_pas_denoising_49_157500.pt

Trained weights

Google Drive

Visual comparison on a sample from BSD68

figure_eval_denoising

🚀 3. Single Image Demoireing

Data Preparation

Training dataset

AIM 2019 Demoireing Challenge

Tesing dataset

100 moireing and clean pairs from AIM 2019 Demoireing Challenge.

Usage

Training

python train_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire --hyper --if_align

Testing

python test_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire_test --hyper --if_align --resume --icnn_path ./checkpoints/ytmt_ucs_demoire/ytmt_ucs_opt_086_00860000.pt

Trained weights

Google Drive

Visual comparison on the validation set of LCDMoire

figure_eval_demoire

You might also like...
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Official implementation of AAAI-21 paper
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

Comments
  • Datasets

    Datasets

    Hi,

    I have been trying to experiment with the model but I'm having trouble finding the correct datasets for testing. The Sirs2 dataset in the provided link doesn't have the images set up with the naming conventions used in the script. Could you please direct me to the correct data sets for testing and training? Is there a separate repository that you have used?

    Thanks so much,

    David

    opened by davidgaddie 3
  • About Training Details

    About Training Details

    Hello, thank you for sharing your wonderful work. I have some question about the triaining details. It says the training epoch is 120 in your paper but the epoch is set to 60 in YTMT-Strategy/options/net_options/train_options.py. Moreover, the best model in your paper is YTMT-UCT which need two stages training. Can you provide the training settings of the YTMT-UCT (epoch, batchsize...)? Look forward to your reply!

    opened by DUT-CSJ 2
  • CUDA vram allocation issue

    CUDA vram allocation issue

    Hi,

    I've been trying to run the reflection test code, but I get this error: RuntimeError: CUDA out of memory. Tried to allocate 15.66 GiB (GPU 0; 22.20 GiB total capacity; 16.09 GiB already allocated; 2.68 GiB free; 17.55 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

    I'm running on an A10G GPU on AWS. I suspect that maybe the dataset is incorrect as each image in the dataset I have is around 800MB. If that's the case can I please be directed to the correct repository for the read20_420 images?

    Thanks so much,

    David

    opened by davidgaddie 1
  • test demoire error

    test demoire error

    Thanks for your great work ,but some error when I run: python test_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire_test --hyper --if_align --resume --icnn_path checkpoints/ytmt_ucs_demoire/ytmt_ucs_demoire_opt_086_00860000.pt

    -------------- End ---------------- [i] initialization method [edsr] Traceback (most recent call last): File "test_demoire.py", line 28, in engine = Engine(opt) File "/nfs_data/code/YTMT-Strategy-main/engine.py", line 19, in init self.__setup() File "/nfs_data/code/YTMT-Strategy-main/engine.py", line 29, in __setup self.model.initialize(opt) File "/nfs_data/code/YTMT-Strategy-main/models/ytmt_model_demoire.py", line 242, in initialize self.load(self, opt.resume_epoch) File "/nfs_data/code/YTMT-Strategy-main/models/ytmt_model_demoire.py", line 413, in load model.net_i.load_state_dict(state_dict['icnn']) File "/opt/conda/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for YTMT_US: Missing key(s) in state_dict: "inc.ytmt_head.fusion_l.weight", "inc.ytmt_head.fusion_l.bias", "inc.ytmt_head.fusion_r.weight", "inc.ytmt_head.fusion_r.bias", "down1.model.ytmt_head.fusion_l.weight", "down1.model.ytmt_head.fusion_l.bias", "down1.model.ytmt_head.fusion_r.weight", "down1.model.ytmt_head.fusion_r.bias", "down2.model.ytmt_head.fusion_l.weight", "down2.model.ytmt_head.fusion_l.bias", "down2.model.ytmt_head.fusion_r.weight", "down2.model.ytmt_head.fusion_r.bias", "down3.model.ytmt_head.fusion_l.weight", "down3.model.ytmt_head.fusion_l.bias", "down3.model.ytmt_head.fusion_r.weight", "down3.model.ytmt_head.fusion_r.bias", "down4.model.ytmt_head.fusion_l.weight", "down4.model.ytmt_head.fusion_l.bias", "down4.model.ytmt_head.fusion_r.weight", "down4.model.ytmt_head.fusion_r.bias", "up1.model.ytmt_head.fusion_l.weight", "up1.model.ytmt_head.fusion_l.bias", "up1.model.ytmt_head.fusion_r.weight", "up1.model.ytmt_head.fusion_r.bias", "up2.model.ytmt_head.fusion_l.weight", "up2.model.ytmt_head.fusion_l.bias", "up2.model.ytmt_head.fusion_r.weight", "up2.model.ytmt_head.fusion_r.bias", "up3.model.ytmt_head.fusion_l.weight", "up3.model.ytmt_head.fusion_l.bias", "up3.model.ytmt_head.fusion_r.weight", "up3.model.ytmt_head.fusion_r.bias", "up4.model.ytmt_head.fusion_l.weight", "up4.model.ytmt_head.fusion_l.bias", "up4.model.ytmt_head.fusion_r.weight", "up4.model.ytmt_head.fusion_r.bias".

    opened by zdyshine 1
Owner
Qiming Hu
Qiming Hu
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022